
NASA Technical Memorandum 108795

.f
//I -6/"

SJ35_

/

_T

],

The Automated Instrumentation
and Monitoring System (AIMS)
Reference Manual

Jerry Yan, Philip Hontalas, Sherry Listgarten, et al.

(NASA-TM-108795) THE AUTOMATED

INSTRUMENTATION AND MONITORING
SYSTEM (AIMS) REFERENCE MANUAL

(NASA) 6] p

N94-23510

Unc]as

November 1993

G3/6i 0203569

National Aeronautics and
Space Administration

NASATechnicalMemorandum108795

The Automated Instrumentation
and Monitoring System (AIMS)
Reference Manual

Jerry Yan, Recom Technologies, San Jose, California
Philip Hontalas, Ames Research Center, Moffett Field, California
Sherry Listgarten, Recom Technologies, San Jose, California
et al.

November 1993

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000

LIST OF AUTHORS

Jerry Yan, Recom Technologies, San Jose, California

Philip Hontalas, Ames Research Center, Moffett Field, California

Sherry Listgarten, Recom Technologies, San Jose, California

Charles Fineman, Sterling Software, Palo Alto, California

Melisa Schmidt, Pankaj Mehra, and Sekhar Sarukkai,

Recom Technologies, San Jose, California

Cathy Schulbach, Ames Research Center, Moffett Field, California

°°°

m

PI_i_D_G PAGE BLANK NOT FILMED

Table of Contents
1

Summary ..
2

1. Introduction ..

1.1. The Automated Instrumentation and Monitoring System 2

1.2. Background and History ... 2

1.3. System Capabilities and Requirements .. 3

1.4. Outline of Document ... 3

2. Using AIMS _ An Example .. 4
5

2.1. The Transpose Program ...

2.2. Source Code Instrumentation .. 5

2.3. Linking and Running ... 7

2.4. Examining the Data .. 7

2.4.1. Creating a sorted trace file with tracesort ... 7

2.4.2. Trace file Animation with VK .. 8

2.4.2.1. The OverVIEW ... 8

2.4.2.2. The Boxes Views ... 9
10

2.4.2.3. Pausing VK ...

2.4.3. Performance Summary with tally ... 12
12

2.5. Summary ..

3. Source Code Instrumentation ... 14
14

3.1. xinstrument

3.1.1.Callingxinstrument ...14

3.1.2.Using xinstrument ...15
17

3.2. Batch mode instrumentors ...
17

3.2.I. Command-line syntax ...

3.2.2.Differenceswith xinstrument ...18

3.3. Instrumentor Directives...18

3.3.I. Using Instrumentor Directives..18

3.3.2.begin_trace andend_trace ..19

3.3.3.begin_block andend_block ..19

3.3.4. insert_marker ...19

3.3.5. flush_trace ..20

3.3.6. define_grid anddefine_grid_nod6 ...20

3.4. Limitations of the Instrumentors .. :_ 20

3.4.1. Using Labels .. 20

3.4.2. Warning Messages During Compilation ... 21

3.4.3. Warning Messages During Execution ... 21

3.4.4. What is Not Instrumented ... 22

PR'E(_IIOINGI PAGE BLANK NOT FILMED PAGE IV INTENTIONALLYBL._,,_K v

.

Appendix A.

Appendix B.

3.5. Preprocessing Programs .. 22

4. Run-Time Performance Monitoring Library .. 23

4.1. Monitor Parameters .. 23

4.1.1. TRACEFILE .. 23

4.1.2. H_TRACE_F ILE ... 24

4.1.3. FILEMODE .. 24

4.1.4. HOST_PROGRAM .. 24

4.1.5. TRACE LEVEL .. 24

4.1.6. BLOCK_ON_ALL_SYNC ..25

4.1.7. BUFFER_SIZE ..25

4.1.8. FLUSH_MODE ..25

4.1.9. PROFILE ...26

4.1.10. APPL_DB_FILE ...26

4.I.1I. Examples of .MONITOR Files,...26

4.2. Linking with the Monitor ..i................27

5. Examining the Trace File..28

5.i. Sorting the Trace File...28

5.2. The View Kernel .. 28

5.2.1. Invoking VK ... 28

5.2.2. Using VK .. 29

5.2.3. OverVIEW ... 31

5.2.4. Boxes Views ... 33

5.2.5. Communication Load .. 34

5.2.6. Inbox Sizes .. 35

5.2.7. Adjusting VK .. 35

5.3. tally ... 36

5.3.1. Calling tally ... 36

5.3.2. ¢ally's Output ... 37

6. Customizing AIMS .. 40

6.1. Setting Defaults for Parameters .. 40

6.1.1. Specifying Defaults on the Command Line ... 40

6.1.2. Specifying Defaults in Files ... 40

6.1.3. How AIMS Finds Defaults ... 40

6.2. Changing VK's Parameters Dynamically .. 41

6.3. A Listing of AIMS' Parameters .. 42

References and Bibliography .. 44

Installation Guide .. 45

From Source Code to Trace Records .. 47

vi ;L;

Appendix C. Trace Records .. •................................. 50

C.1. A Listing of AIMS Trace Records ... 50

C.2. Trace Record Formats ... 50

C.2.I. Short Format ... 50

C.2.2. Code Block Format ... 51

C.2.3. Message Format .. 51

C.2.4. Short Message Format .. 51
52

C.2.5. Flush Format ..

C.2.6. Topology Format .. 52
52

C.3. Trace Record Interpretation ..

Appendix D. AIMS Parameters ... 53

D.1. xinstrument Parameters .. 53

D.2. VK Parameters ... 53

D.2.1. General VK Parameters .. 53
55

D.2.2. View Parameters ...

D.2.2.1.

D.2.2.2.

D.2.2.3.

D.2.2.4.

Appendix E.

General View Parameters .. 55

Scrolling View Parameters ... 56

Histogram View Parameters ... 57

Specific View Parameters ... 58

Converting AIMS Trace Files for ParaGraph ... 60

vii

Figures

Figure 2-1. Using AIMS to Evaluate Parallel Program Execution 4

Figure 2-2. Output from Matrix Transpose Example ... 6

Figure 2-3. Graphical Interface of "xins trument": AIMS's Source Code
Instrumentor ... 7

8
Figure 2-4. VK's Main Menu ...

Figure 2-5. OverVIEW and the Application Legend ... 8

Figure 2-6. Relating Observed Events with the Source Code 9
10

Figure 2-7. Boxes (Circle) View ..

Figure 2-8. Time Control Window ... 11

Figure 2-9. Break-point Control Window ... 11

Figure 2-10. Excerpt from Tally's Output for Transpose .. 13
16

Figure 3-I. xinstrument ...

Figure 4-1. Inserted Event Recorders Generating Trace Records23
29

Figure 5-i. VK's Menu ...
30

Figure 5-2. Views Menu ..

Figure 5-3. Construct Legend ...30

Figure 5-4. Control by Time vs.Break-Points ..31
31

Figure 5-5. Color Editor..
32

Figure 5-6. OverVIEW ..

Figure 5-7. A Box ..33

Figure 5-8. Boxes Views: The Grid and CircleVersions ...34

Figure 5-9. Communication Load View ...34

Figure 5-10. Inbox SizesView ..35

Figure 5-11. A Potpourri of Graphs Created by Excel 4.0 From tally Output38

Figure 6-I. An Example of X-defaults...41

Figure E-I. A Potpourri ofParaGraph Views from a Converted AIMS Trace File...60

PR6C,_[WNF,_ PAGE BLANK NOT FILMED

PAGE V[I/ INTENTIONALLYBLANK ix

Summary

Whether a researcher is designing the "next parallel programming paradigm", another

"scalable muhiprocessor" or investigating resource allocation algorithms for muhiprocessors,

a facility that enables parallel program execution to be captured and displayed is invaluable.

Careful analysis of execution traces can help computer designers and software architects to

uncover system behavior and to take advantage of specific application characteristics and

hardware features. A software tool kit that facilitates performance evaluation of parallel

applications on multiprocessors is described in this paper. The Automated Instrumentation

and Monitoring System (AIMS) has four major software components: a source code

instrumentor which automatically inserts active event recorders into the program's source

code before compilation; a run-time performance-monitoring library, which collects per-

formance data; a trace file animation and analysis tool kit which reconstructs program execu-

tion from the trace file; and a trace post-processor which compensate for data collection over-

head. Besides being used as a prototype for developing new techniques for instrumenting,

monitoring, and visualizing parallel program execution, AIMS is also being incorporated into

the run-time environments of various hardware testbeds to evaluate their impact on user pro-

ductivity. Currently, AIMS instrumentors accepts FORTRAN and C parallel programs written

for Intel's NX operating system on the iPSC family of muhicomputers. A run-time

performance-monitoring library for the iPSC/860 is included in this release. We plan to

release monitors for other platforms (such as PVM and TMC's CM-5) in the near future.

Performance data collected can be graphically displayed on workstations (e.g., Sun Sparc and

SGI) supporting X-Windows (in particular, XlIR5, Motif i.i. 3).

1. Introduction

1.1. The Automated Instrumentation and Monitoring System

The Automated Instrumentation and Monitoring System (AIMS) facilitates the tuning of

parallel applications by capturing and visualizing execution data. To accomplish this, AIMS

has three major software components: a source code instrumentor, a run-time performance-

monitoring library, and a set of visualization�analysis tools for examining the collected data.

• The source-code instrumentor, xinstrument, inserts performance monitoring routines

into the application's source code. The programmer can select from a menu those files

and constructs that should be instrumented.

• The run-time performance monitoring library, or monitor, provides a set of moni-

toring routines that measure and record various aspects of program performance such

as message passing overhead, synchronization overhead, and time spent in different

subroutines.

• Two tools process and display the execution data. View Kernel (VK) animates the

application's behavior on the multiprocessor; implementation bottlenecks and load

imbalances can easily be observed, tally provides performance statistics for the entire

program execution. These statistics provide insights into the general behavior of the

program and may indicate where the animated views should be focused. The data

from tally can also be used as input to statistical drawing packages such as GNUplot,

WingZ or Microsoft Excel.

1.2. Background and History

AIMS was developed after evaluating several software prototypes from the research com-

munity and reviewing published ideas on performance visualization. We would like to ac-

knowledge the community's help/support in letting us adopt, adapt and augment their re-

search prototypes for the parallel-processing environment here at NASA Ames Research

Center. The current version of AIMS uses the POEM source code instrumentation system

developed under the Programming and Instrumentation Environment (PIE) project [Ref. 1]

at Carnegie-Mellon University. AIMS' monitor adopts many of the event-record conventions

established by PICL, a Portable Instrumented Communication Library [Ref. 2]. Some of the

displays have been inspired by ParaGraph [Ref. 3] and Quartz [Ref. 4]. We also want to

acknowledge the computing facilities provided to us by the Numerical Aerodynamic

Simulation Division, NASA Ames Research Center. AIMS is developed under the sponsorship

of NASA's High Performance Computing and Communications Program.

We also want to acknowledge the students who spent their summers working on various

features for AIMS: Chris Hanson, Philip Tayco, Jacob Gotwals, and Brian Schmidt. Tarek

Elaydi with Lawrence Berkeley Laboratories was responsible for building an AIMS prototype

for TMC's CM5. Rob Gordon from Convex Computers Corp. was responsible for building an

2

AIMSprototype for PVM onUNIX platforms. Bothversionswill beavailablethrough
COSMICin future releases.RichardPapasinbuilt atopg: atranslatorthat convertsour trace
files to a format understandableby ParaGraph[Ref.3].

1.3. System Capabilities and Requirements

AIMS 2.2 supportsFortran77 andOunder the NX(version2/3.3.1,3.3.2) operatingsys-
tem on the Intel iPSC/860. Theinstrumentationand visualizationtools requirea color
workstation running x Windows (versionXllR5) andOSF/motif (version 1.1.3);these
toolshavebeentestedonSunSparcStationsunder SunO/S4.0.3and on SiliconGraphicsIRIS
under IRIX 3.3 (or 4.0) running the twin ormwmwindow manager.

1.4. Outline of Document

Chapter2 introducesAIMSby running through anexampleandbriefly describingits
commonly usedfeatures. Chapters3, 4, and 5, respectively,describethe instrumentor, the
monitor, and the analysistools in moredetail. Chapter6 explainshow AIMS canbe cus-
tomized.

At the end of the manualareseveraltechnicalappendices.AppendixA (Installation Guide)
describeshow to install AIMS. Appendix B (From SourceCodeto TraceRecords)tabulates
the sourcecodeconstructsand correspondingtracerecords,along"withthe monitor routines
that createthe recordsand anynecessaryconditions for their creation. Appendix C (Trace
Records)details the format and semanticsof eachtracerecordgeneratedby the monitor.
Appendix D (CustomizationParameters)itemizesthe parametersavailablefor customization
purposes. Appendix E (Converting AIMStracefiles for ParaGraph)describesasimple tool
that convertsour tracefilesfor ParaGraph.

3

2. Using AIMS m An Example

AIMS depicts the actual execution of a parallel program on a multiprocessor. The system's

three main software components -- an instrumentor (xinstrument), a run-time performance

monitoring library (monitor), and a set of analysis tools (VK and tally) -- measure and

display a program's performance, xinstrument modifies the source code so that event timings

and other information from the program's execution can be recorded. The monitor consists

of a set of routines that are called by the instrumented code. These routines create a trace file

used by VK and tally. VK provides a number of animated views that can be used to observe

the program's behavior, tally records and tabulates cumulative statistics from the data in the

trace file. Figure 2-1 below illustrates how xinstrument, monitor, and VK/tally interact.

Figure 2-1. Using AIMS to Evaluate Parallel Program Execution

The user should note that in addition to inserting instrumentation at appropriate locations

in the program code, xinstrument generates two important structures: an "application

database" and an "instrument-enabling profile":

• The application database is used for storing information about the static structure of

an application's source code. The analysis tools use this information in order to relate

traced events to instrumented constructs in the source code. The instrumentation

programs (see Section 3) build the application database and write it to a file that is

4

subsequentlyincorporatedat thebeginningof the tracefile producedby executing the
instrumentedapplicationprogram.

• The instrument enablingprofile is basicallya tableof flags;onefor eachconstruct in
the applicationdatabase.This profile is usedtwice:
i) by the instrumentor to selecttheconstructsto be instrumented;and
ii) by the monitor to selectthe instrumentedconstructs to be traced.

Only thoseconstructswhoseflagsaretrue in the profile will be instrumented/traced;
thus, the useof instrumentationcanbeswitchedon/off without recompiling the
instrumentedcode! (seeChapter3).

Thesethreecomponentsof AIMSwill bedescribedin detail in Chapters3, 4 and 5. We now
givea quick overviewof AIMS'ability to instrument,monitor andevaluatetheperformance
of parallelprograms.

2.1. The Transpose Program

A sample FORTRAN program is included with the AIMS distribution tape, in a top-level

directory called examp 1 e/. It contains six For t ran7 7 files (five source code (. f) files and

one include file (transpose. incl)), amakefile, a monitor option file (. MONITOR), two

AIMS tracefiles(TRACE. OUT andTRACE2. OUT), and aREADME file.This parallelprogram

"transposes" a matrix on the nodes of a hypercube. Initially, the matrix is distributed by rows

among a certain number of processors; at the end of the run, the matrix is distributed by

columns. The code provides two methods for achieving this. One uses "synchronous sends",

and the other uses "asynchronous sends" with extra buffers. The user is prompted for the

method to use, as well as the dimension of the hypercube and the number of matrix rows per

processor.

In order to compile the host (transpose_host) and node (transpose_node) pro

grams, the make f i 1 e may have to be modified (in particular, the lines specifying the loca-

tion of the host and AIMS libraries). An execution log is shown in Figure 2-2; the program

prompts for some information, and then prints a subset of the rows and columns of the

matrix both before and after the transpose.

2.2. Source Code Instrumentation

xinstrument "instruments" application source code by inserting calls to monitoring routines

into the code. These routines trace the performance of various constructs such as subroutine

invocations, synchronization operations, and message routines. Typing "xinstrument

-overwrite" from the source directory brings up a window as shown in Figure 2-3. There

are three sections in the top-level window of xinstrument. They are, in the order of ap-

pearance, the menu bar, the module table, and the instrument button. On-line help for most

windows can be displayed by pressing the MOTIF help key (usually FI). The module table

lists all of the modules in the application database.

5

> transpose_host
Enter dimension of cube:

3

Enter number of matrix rows per processor:

4O

Enter method [I or 2]:

1

Transposing a(n) 320 x 320 matrix on a(n)

Allocating the cube...

Loading the program onto the nodes...
Nodes have been initialized.

8-node cube.

1 12801 25601 38401 51201 64001 76801 89601

41 12841 25641 38441 51241 64041 76841 89641

81 12881 25681 38481 51281 64081 76881 89681

121 12921 25721 38521 51321 64121 76921 89721
161 12961 25761 38561 51361 64161 76961 89761

201 13001 25801 38601 51401 64201 77001 89801

241 13041 25841 38641 51441 64241 77041 89841

281 13081 25881 38681 51481 64281 77081 89881

1 41 81 121 161 201 241 281

12801 12841 12881 12921 12961 13001 13041 13081

25601 25641 25681 25721 25761 25801 25841 25881

38401 38441 38481 38521 38561 38601 38641 38681

51201 51241 51281 51321 51361 51401 51441 51481

64001 64041 64081 64121 64161 64201 64241 64281

76801 76841 76881 76921 76961 77001 77041 77081

89601 89641 89681 89721 89761 89801 89841 89881

Transpose is complete.
>

Figure 2-2. Output from Matrix Transpose Example

Modules can be loaded into the application database by selecting the "Load Modules"

item from the "File" menu. A Module Loader Window will appear, as shown in Figure 2-3.

The user should select the "F77 IPSC/860 Host" platform for "transpose host. f"

and "F77 IPSC/860 Node" for the rest of the modules. The file names of the selected

modules should now appear in the module table in xinstrument's main window. In order to

trace the execution of different subroutines, select all the files in the module table before

enabling the Subroutine option under the Enable By Type item from the Profile menu. All

subroutines in selected modules will be instrumented when the instrument button is finally

pressed. Pressing the Exit item will terminate xinstrument.

The instrumentor has now created an ins t/directory containing the application database

(a file named APPL_DB) and the instrumented source code (in this case, consisting of five

FORTRAN files).The filestranspose, incl,makefile, and .MONITOR should be

copied to inst/from the source directoryto complete the set-up.

ORIGINAL PAGE IS

OF POOR QUALITY

transpose_node.f

Figure 2-3. Graphical Interface of "xinstrument": AIMS's Source Code Instrumentor

2.3. Linking and Running

The second step in using AIMS is to link, compile, and run the instrumented code. The

makefile has already been set up to link the AIMS libraries (hostlib. a and nodelib, a)

with the transpose program. Compilation involves running "make" again, this time from the

inst / directory.

The program runs just as before, except that information about certain monitor parameters

is printed out, and a file called TRACE. OUT is created. This trace file is used as the input for

the analysis programs.

Trace files (TRACE. OUT and TRACE2. OUT) included in the distribution was obtained by

executing the transpose program on an 8-node cube, with 40 rows per processor using

methods 1 and 2 respectively. If the user cannot use iPSC/860 for generating new trace files,

the user may simply copy these into the inst/directory to try out VK.

2.4. Examining the Data

2.4.1. Creating a sorted trace file with tracesort

Trace files must first be sorted with the tracesort program by typing:

tracesort TRACE.OUT > TRACE.SORT

2.4.2. Trace file Animation with

To run the View Kernel, VK, "cd" to the (uninstrumented) source directory and type:

irK inst/TRACE.SORT

As shown in Figure 2-4, VK's main window has four VCR-like control-buttons that corre-

spond to "rewind" "play" "pause" ([]), and "single-step" (_) from left to right.

Pressing these buttons has no effect unless one or more views are displayed. Clicking on

Views allows the user to select one of many displays that VK provides. After opening the

OverVIEW and Boxes (Circle) views, the user may hit the "_; button to begin playback.

2.4.2.1. The OverVIEW

The OverVIEW shows the procedures running

on each node, and the messages being passed

between them. As shown in Figure 2-5, the

nodes are represented by rows; node numbers

are listed on the left. OverVIEW uses colors or

bitmaps to depict the various procedures. Thin Figure 2-4. VK's Main Menu

lines on the OverVIEW indicate messages being

sent between nodes. Rows of x's at the end of the "play-back" indicate that the nodes are

writing the trace records to disk.

OverVIEW

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

O.O000 TIHE (mseo) 350.0000

Figure 2-5. OverVIEW and the Application Legend

OverVIEW is initially set to scroll after 100 msec. of the trace file, so that it shows only 100

msec. worth of data at a given time. This value may be changed by typing "x" to the

OverviEW window to modify the length (in milliseconds) of the x-axis. Decreasing the scale

will cause OverVIEW to show more detail, while increasing it will allow one to see more of

the trace file at once. The value in the pop-up window can be edited with backspaces and

keystrokes. When finished, the user should hit <Return>, or use the OK button at the bottom

of the window. Changes will be immediately reflected in the OverviEW. This process may

8

be repeated by pressing the V_RButtons corresponding to Rewindand Play from the main

menu.

By clicking on the OverVIEWs window, one can obtain information about the constructs

depicted there. For example, clicking on a procedure bar with the middl___.__ebutton will review

the subroutine running at that time/node point. Holding the < Shi f t> key down while

clicking will yield a window containing the code for the corresponding subroutine. Similarly,

one can click on a message line with either the lef__!tor _ buttons. Shift-clicking with the

left button will show the code causing the send, and shift-clicking with the right button will

show the code causing the receive. As Shown in Figure 2-6, the exact line is pointed to by a

"^" in the source-code window. Performing these mouse clicks with the <cntrl-> key will

produce "construct tree" views showing the relationship between the observed event and

instrumented points in the source code.
_vert/IEW

_ === _.___

N_ " _ "_-_._-_ ..nmm.- _ "_lmm_--- _,

.i f --'_<____ ._-

TXI"E (_,4m)

Figure 2-6. Relating Observed Events with the Source Code

Many features of the OverVIEW may be changed, including the order in which the nodes

are listed and whether or not messages are displayed; the colors in which the procedures are

drawn can be edited; and break-points in the display may be set. These features are explained

further in Chapters 5 and 6. One can also press the MOTIF help key (usually F1) in

OverVIEW's window for help.

2.4.2.2. The Boxes Views

The Boxes views depict the state of each processor and the messages passing between the

processors. The Grid version is meaningful only if the topology underlying the algorithm is a
..... id"

grid. In that case, "define_node" and _terzne gr calls must be inserted into the

code to activate the Grid view. The Circle version works without these calls.

ORi_.NAL PA,3E fS

OF POOR QUALITY

As shown in Figure 2-7, each pro-

cessor is represented in the Boxes

Views by a rectangle containing five

small boxes. The three central boxes

contain the node number, node state,

and current procedure, from top to

bottom. The Node States Legend

(click on Legends in the main menu,

then on Node States) shows the

possible node states. The column to

the left of the node number and state

indicates the number of messages

pending for the node. (A pending

message is a message that has been

sent but not yet processed by the re-

Node States

Figure 2-7. Boxes (Circle) View

and Node State Legend

ceiver.) A full column means 10 or more messages are pending. The column to the right

indicates the node utilization, the proportion of execution time the node has spent doing

useful work. A low value indicates that the node has been blocked for a large amount of time.

Lines between boxes indicate the presence of one or more pending messages.

2.4.2.3. Pausing VK

Since some of VK's views (such as the Boxes views) are not scrolling views, it can be useful

to pause in the middle of the trace file so the display will reflect the program's state at that

point in time. With VK, the user can choose either to pause at a certain time in the trace file,

or to pause when one or more subroutines are reached. This is done via the "Time Control"

option under the Controls menu.

Setting the "pause" and "resume" times will cause VK to pause and/or resume reading the

trace file when it first reaches a record occurring on or after the specified time. The values in

the Time Control Window may be changed by placing the cursor over the value to be

changed. Unless the <Return> key is pressed when one is done editing; changes wilt not

take effect. Figure 2-8 was obtained when VK pauses at time 36.76 while viewing
TRACE. OUT.

VK may be paused at a certain instrumented construct via the Breakpoints Enabled option

under the Control menu. In order to identify the break point, specific files containing the

source code have to be selected from the Construct Legend under the Control menu. Figure 2-

9 illustrates this situation with the transform example. Now, if one resets and views the trace

file, VK will stop whenever any node encounters one of the selected constructs. Hitting the

"_" button in the main window will resume playback.

10

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

0o0000

0 vbi'V I EW

OverVIEW
=

TIME (msec)

I

I

I

I
I

AIMS Program Animator l
, i_! I ' I

Control by time

Figure 2-8. Time Control Window
/u/orville/oe/_lan/examples/transpose/transpuse-node.f

Modules

OverVIEW

I RIMS Pro_Iram Animator'

15

13
t2

11
t0

9
8

7
6

S
4

3
2

1
0

0o0000

I

170ooooo

Figure 2-9. Break-point Control Window

VK has a number of other useful views, as described in Chapter 5. But VK does not provide

cumulative statistics; these are provided by the tally program.

11

2.4.3. Performance Summary with tally

For each node, tally collects the following statistics: lifetime, busy time, volume of messages

received, amount of time spent blocking on a receive, volume of messages sent, amount of

time spent blocking on a send, number of times in a global operation, and the amount of time

spent in global operations. These raw data can be seen by typing "tally

inst/TRACE. SORT [more" from the source directory. In addition, tally provides some

statistics (see Section 5.3) which help in focusing on problem functions and processors.

tally also breaks these statistics down by subroutine, so one can know, for example, as

shown in Figure 2-10, how much time was spent blocking on receives by node 4 in sub-

routine transposel. These statistics are printed out in tables on both a per-node and per-

subroutine basis, as described in Section 5.3.

2.5. Summary

The reader should now have an idea of how AIMS works. The reader should familiarize

him/herself with VK's other views, read the help windows for information about them, and

try to use AIMS to compare methods 1 and 2 for transposing a matrix.

The remainder of the manual discusses the system in more detail: Chapter 3 discusses the

instrumentor; Chapter 4, the monitor; and Chapter 5 the analysis tools. Chapter 6 explains

the different ways to customize AIMS.

12

Tables for trace file 'T':

ROUTINE SUMMARY

Routine Busy Global Send Recv Life % Comm.
Time Blocking Blocking Blocking Time Commn Index

1 transpose1 229.399 0.000 246.186 64.887 540.472 57.555 0.387

2 transpose_node 100.659 0.000 0.186 160.826 261.671 61.532 0.200
3 bin_to_dec 0.508 0.000 0.000 0.000 0.508 0.000 0.000
4 dec_to_bin 0.128 0.000 0.000 0.000 0.128 0.000 0.000
5 <rest.. > 0.117 0.000 0.000 0.000 0.117 0.000 0.000

NODE SUMMARY

Node Busy Global Send Recv Life % Commn
Time Blocking Blocking Blocking Time

0 37.443 0.000 34.241 28.154 99.838 62.496
1 39.927 0.000 35.575 28.342 103.844 61.550
2 39.560 0.000 24.994 33.395 97.949 59.611
3 44.796 0.000 29.530 27.495 101.821 56.005
4 39.289 0.000 30.399 28.216 97.904 59.869

STATISTICS FOR ROUTINE transpose1
Node Busy Global Send Recv Life % Commn

Time Blocking Blocking Blocking Time
0 24.754 0.000 34.220 8.191 67.165 63.144
1 27.263 0.000 35.555 8.232 71.050 61.628
2 26.861 0.000 24.967 13.341 65.169 58.782
3 32.139 0.000 29.509 7.381 69.029 53.441

4 26.605 0.000 30.374 8.156 65.135 59.154

...

STATISTICS FOR ROUTINE transpose_node

Node Busy Global Send Recv Life % Commn
Time Blocking Blocking Blocking Time

0 12.599 0.000 0.021 19.963 32.583 61.332
1 12.573 0.000 0.020 20.110 32.703 61.553
2 12.605 0.000 0.027 20.054 32.686 61.436
3 12.562 0.000 0.021 20.114 32.697 61.580
4 12.589 0.000 0.025 20.060 32.674 61.470

NCPU STATISTIC
Routine 1 2 3 4 5 6 7 8

transpose1 5.342 13.957 7.038 9.436 5.806 8.677 5.325 2.363
transpose_node 0.289 0.017 0.091 0.110 0.063 0.062 0.042 12.329
bin_to_dec 0.000 0.012 0.029 0.032 0.014 0.015 0.008 0.005
<rest..> 0.004 0.003 0.001 0.001 0.001 0.001 0.004 0.006

dec_to_bin 0.000 0.000 0.000 0.000 0.005 0.001 0.004 0.007
<flush> 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Routine

transpose 1
transpose_node
bin_to_dec
dec_to_bin
<rest..>

<flush>

ROUTINE CONCURRENCY STATISTIC
1 2 3 4 5 6

5.667 14.060 7.109 9.631 5.914 8.584
0.599 0.171 0.363 0.006 0.057 0.058
0.386 0.061 0.000 0.000 0.000 0.000
0.050 0.039 0.000 0.000 0.000 0.000
0.038 0.002 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000

7
5.257
0.092
0.000
0.000
0.005
0.000

Figure 2-10. Excerpt from Tally's Output for Transpose

8
2.236
12.166
0.000
0.000
0.005
0.000

13

3. Source Code Instrumentation

AIMS' instrumentors insert calls to monitoring routines into code. Such calls replace or

surround instrumentable constructs, such as message sends and receives, synchronization

operations and subroutine invocations.

AIMS provides two instrumentors, xinstrument and instrument, for instrumenting source

code. xinstrument is window-based, while the simpler instrument is not. The latter is,

therefore, useful in makefiles and shell scripts.

The xinstrument and instrument commands are described in details in the next two sec-

tions. The third section describes instrumentor directives that can be inserted into source code

by hand in order to direct the automatic instrumentation. A concise summary of the

information presented here is available as on-line help for xinstrument.

3.1. xinstrument

The xinstrument program instruments source code with minimal user-intervention. An X-

based interface facilitates the instrumentation of source files as well as of program constructs

within those files. These instrumentor specifications, called profiles, can be saved for later

use.

3.1.1. Calling xinstrument

xinstrument is invoked as follows, from the directory containing the source code:

xinstrument [-adb <application database>]

[-oadb <output application database>]

[-overwrite]

[-help]

[-output <directory>]

[-origin <directory>]

[-platform <option>]

[-run_pp] (run the

[-no_pp] (do not

[-pp_command

[-pp_options

<file(s)>

preprocessor)

run the preprocessor)

<command-template>]

<switches>]

The application database is used by xinstrument to determine which files to consider for

instrumentation. The output application database is used to store information about those

files and is later used by the analysis tools to relate the trace file to the source code. If no

database is specified on the command-line, xinstrument will use the file APPL_DB in the

output directory. In some cases, the output directory may already exist; xinstrument takes a

14

precautionary measure and does not overwrite an existing file that already exists unless the

-overwrite flag is specified.

xinstrument places the instrumented code in the output directory. Note that uninstru-

mented files, such as makefiles and include files, are not written into this directory by the

instrumentor, and must be copied over manually after the directory has been created. If no

output directory is specified, the directory. /inst is used.

xinstrument does not require that all source files be found in the same directory. Thus, if

multiple paths are utilized, the -origin option can be used to define the root of a muhi-direc-

tory source tree. If no root is explicitly specified, the current working directory is used by

default.

If any files are specified on the command-line, xinstrument loads them into the application

database using the platform defined with the -platform flag. These files can be instru-

mented along with any others that may already have been stored in the database. The plat-

form options are f77-nx-host, f77-nx-node, c-nx-host and_-nx-node. If the file

to be loaded is a FORTRAN file and should be run as a host program, the f77-nx-host

option should be used. Similarly, the f77-nx-node option should be utilized for

FORTRAN node programs; c-nx-host for C host programs; c-nx-node for C node pro

grams. If a -platform flag is not used, the platform is assumed to be c-nx-host. Files

should be reloaded into the database whenever they are modified. While it is possible to in-

strument a newly modified file without reloading it into the database, this may cause AIMS to

fail.

If the code to be loaded does not need to be run through a preprocessor, the -no_.pp flag

should be used. Otherwise, the user should first define the preprocessing command and

options using the -pp_command and -pp_options flags and then use the-run_lop flag.

AIMS assumes that the preprocessing command sends the "preprocessed" file to stdout.

Thus, preprocessing commands that do not utilize this can not be used.

If the -help flag is present, xinstrument prints a usage message and exits.

xinstrument will also accept standard X options such as -fn (font), -bg (background

color), and -fg (foreground color).

3.1.2. Using xinstrument

There are three sections in the top-level window of xinstrument. They are, in the order of

appearance, the menu bar, the module table, and the instrument button.

The Files menu contains four options: Use Database, Load Module(s), Copy File(s) and Exit.

The Use Database option allows a previously defined application database to be loaded into

the modules list. The loading of this file containing the database is done through a file

selection window. A file is selected by clicking on the appropriate file name with the left

mouse button. Once the menu item is highlighted, it can be loaded by pressing OK or

<return>.

15

Using the Load Modules file selection window, individual modules can be loaded into a list

of modules to be instrumented. Single clicking the left (CTRL-left) mouse button or drag-

ging it will select (deselect) files. The desired platform is selected under the Platform menu;

F77 IPSC/860 Host is used for FORTRAN host programs, F77 IPSC/860 Node is used for

FORTRAN node programs, C IPSC/860 Host is used for C host programs, and C IPSC/860 Node

is used for C node programs. Once all files have been selected, loading will take place if the

Load or <return> button is used. The Donebutton is selected to dismiss the window.

The middle panel of the main t,,,.,t,o,__.od..f

window shows all of the files in

the application database. Files

can be selected by clicking the left

mouse button on top of the file

name, and multiple files can be

selected using CTRL-left mouse

button; the selected files are

highlighted, and will be instru-

mented when the Instrument but-

ton is clicked• Within each file

are a number of instrumentable

constructs. One can select the

constructs to be instrumented by

double clicking the left mouse Figure 3-1. xinstrument

button on the file of interest. This brings up a list of all instrumentable constructs for that

file, as shown in the window tided transpose_node, f of Figure 3-1. Clicking on con

structs will select (or deselect) them; selected constructs are highlighted, and will be in-

strumented if the file is instrumented t. By default, only system-level constructs, such as

message routines and global operations, will be selected for instrumentation. Subroutines

will not be selected. Note that the selected constructs will be instrumented onIy in the file

currently selected for instrumentation.

The top three options in the Profile Operations panel allow one to select all constructs, de-

select all constructs, or select only the default constructs of the application (as specified by

AIMS). The next two options are used to enable or disable constructs by type. These op-

erations will apply to all of the files highlighted in the Files panel. With the Save and Load

buttons, one can store and reload instrumentation profiles. When either of these buttons is

pressed, a dialogue box will appear requesting the user to enter the name of the file contain-

ing the profile. Hitting Save or Load or <return> will save or load the file, while Oancelwill

discontinue the operation.

"tCertain constructs will always be instrumented, such as program starts and terminations. Others will be

instrumented only if related constructs are instrumented, such as subroutine returns.

16

The third menu containsfivemser-settableoptions: theoutput directory, the origin directory,

the run preprocessor selection,.___the_,set preprocessor command, and the set preprocessor options.

The output directory specifie:_ where the instrumented files will be saved. Note that changes

to the output directory will not take effect until OK or <return> has been pressed in that

dialogue box. If the files require preprocessing before loading the modules, the user must

give the preprocessing command by selecting the Set Preprocessor Command option and then

selecting the Run Preprocessor option of the menu.

Pressing Instrument causes all selected files to be instrumented. The resulting files will be

saved in the output directory with the same name as the original source file. The Exit button

under the File Menu terminates the application.

3.2. Batch mode instrumentors

The instrument program is a simplified version of the xinstrument program. It is not X-

based, and can therefore be useful in makefiles and shell scripts. The appropriate binary

changes depending on the desired platform. The name of the binary files follow the form:

inst-<platform>;

where <platform> is either c-nx-host, c-nx-node, f77-nx-host or f77-nx-node.

3.2.1. Command-line syntax

The command-line syntax of usin_ the batch mode instrumentor is:

inst-<platform> [-adb <application database>]

[-oadb <output application database>]

[-overwrite]

[-origin <directory>]

[-output <directory>]

f-help]

[-run_pp]

[-no_pp]

[-pp command

[-pp options

[-verbose]

[-enable <option>]

<file(s)>

(run the preprocessor)

(do not run the preprocessor)

<command-template>]

<switches>]

The profile option is all, default, or the name of a file containing a stored profile.

The -adb, -oadb, -output, -origin, -overwrite, -run_ppvno__pp,

-pp_command, -pp_options and-help switches function as with xinstrument Ifthe

-verbose flag is present, status messages are printed.

The -enable option is used to specify which constructs are instrumented. By default,

AIMS instruments only system-level calls, such as message routines and global operations,

17

and no subroutines. If the all option is specified,all constructsareinstrumented. (Note
that selectingall maygenerateaVERY LARGE tracefile!) If the option is neither default nor

al 1, the instrumentor expects the name of a profile file. (Profile files are generated by

xinstrument, as described in Section 3.1.2.)

The -enable switch may appear more than once on the command-line; each file will be

instrumented using the switch that most closely precedes it. At least one source file should

be specified on the command-line.

3.2.2. Differences with xinstrument

The batch mode program instruments only those files listed on the command-line.

Therefore, at least one file should be specified on the command-line, xinstrument, however,

looks for files in the application database, as well as on the command-line, so it is possible to

use xinstrument without specifying any files at all.

The instrumentor instruments all of the files that are specified on the command-line.

xinstrument loads files into the database, but one can then choose not to instrument some

files.

The batch mode instrumentor is not X-based, so it has platform specific calls and -enable

switches to perform the functions of some of xinstrument's buttons. Also, because it is not

X-based, it can easily be called from makefiles and shell scripts.

3.3. Instrumentor Directives

The automatic instrumentation provided by xinstrument may not be sufficient for your

purposes. You may want to instrument constructs that xinstrument does not recognize, or

you may find that you only need to instrument only a few rather than all of the iterations of a

loop. To handle these and similar situations, AIMS provides eight instrumentor directives.

The instrumentor replaces these directives with calls to monitor routines, just as it replaces

calls such as csend.

3.3.1. Using Instrumentor Directives

Instrumentor directives may be simply inserted into a program as subroutines. For ex-

ample, the line

CALL insert_marker('Starting loop')

marks the beginning of a loop. When the program is executed, the corresponding monitor

routine will generate a MARKER trace record, which will be displayed by VK's OverVIEW.

The user can compile and run uninstrumented source code containing instrumentor di-

rectives if the code is linked with the monitor libraries, as described in Section 4.2. The rou-

tines have no effect in uninstrumented code.

18

3.3.2. begin__trace and end_trace

The begin_trace andend trace directivesallow you to turn tracingon and off.

While the automatic instrumentor allows only that certain selected constructs be always

traced, it doesn't permit one to specify general conditions for tracing. On the other hand, in-

serting begin_trace andend_trace directives (e.g., inside IF statements) allows one to

trace only when something unusual happens, or when some value gets particularly large.

These directives can be inserted anywhere you can place a CALL statement. If two

begin_trace's (end_trace's) are called without an intervening end_trace

(begin_trace), the second call has no effect.

3.3.3. begin_block and end_block

The begin__block andend block directives allow you to treat a segment of a subrou-

tine as a subroutine in its own right. The analysis tools will collect data for this region just as

for any subroutine. You can use these directives either to provide more detailed monitoring

by instrumenting small blocks within an instrumented subroutine or, less detailed, by

creating blocks around calls to subroutines and deselecting those subroutines so that they are

not instrumented.

These directives take a single string (CHARACTER*n) argument, which is the name you

want to associate with the block. For example, you might insert calls to begin_block

('Initialize') and end__block ('Initialize') around an initialization section. The string argu-

ments in a pair of calls should match.

Blocks may be nested, but they should not overlap. In general, blocks should be structured

in such a way that the statements inside could be replaced by a subroutine. This means, for

example, that constructs such as the following are not allowed. (Note that such placements

are allowed forbegin_trace and end_trace.)

CALL begin_block('Bad Block')

IF (i .EQ. i) THEN

CALL end_block('Bad Block')

END IF

3.3.4. insert_marker

The insert_marker directive can be used to get timing information at any point in the

code where you can call a subroutine. This directive takes a single string (CHARACTER*n)

argument, which is the name of the marker. The marker will be displayed by VK's

OverVIEW as a vertical line in a procedure bar (see Section 5.2.1). OverVIEW will also print

out the time each marker occurred.

19

3.3.5. flush trace

The flush_trace directive allows you to indicate when you want the processor to write

its trace records to disk. As described in Section 4, each node stores the records generated by

the monitoring routines to a buffer in the node's memory; this buffer is periodically flushed

(written to disk). While the monitor will automatically do a flush when the record buffer fills

up, that strategy may cause flushing to occur at a time that will significantly disturb the

program's execution. Inserting flushtrace directives will help to prevent undue

perturbation, especially when the record buffer is relatively small. A f lush_trac e can be

inserted anywhere a CALL statement can appear.

3.3.6. define_grid and definegridnode

If your algorithm has an underlying grid topology, the define_grid and

define_grid_node directives can be used to enable VK's Boxes (Grid) view. That view

displays processor nodes in a rectangular grid, with each intersection occupied by a single

node. The define_grid directive specifies the dimensions of the grid, and

define_grid_node specifies the location of a node on that grid.

The clef ine_grid directive takes two positive integer parameters, indicating the number

of rows and columns, respectively, in the grid: "CALL define_grid(rows, cols)"

The define_gridnode directive, which must be called from a node, also takes two

integer parameters. They specify the coordinates of the calling node on the grid: "CALL

define_grid_node (i, j)", where 1 <= i <= rows and I <=j <= cols.

3.4. Limitations of the Instrumentors

3.4.1. Using Labels

The instrumentors do not account for labels when inserting instrumentation. This can

cause problems. For example, when the instrumentor sees a FORTRAN END statement, it

inserts a few monitor routines before thai statement (as shown in Example 3-1).

Source Code

send_id = isend(...)

END IF

END

Instrumented Code

send_id = async_send(...)

END IF

CALL stop_trace

CALL mon_term

CALL proc_end (3,0)

END

Example 3-1: Instrumentation of an END Statement

If a label precedes the END statement, these calls are not inserted between the label and the

END statement, but rather after the line preceding the END statementl This can result in the

2O

instrumentedprogramhanging,sincea GOTO statement elsewhere in the code will go right to

the END statement without executing these routines.

10

Source Code

send_id = isend(...)

END IF

END

i0

Instrumented Code

send id = ...

END IF

CALL stop_trace

CALL mon_term

CALL proc_end (3,0)

END

Example 3-2: Faulty Instrumentation of a Labeled END Statement

As a result, we recommend that labels be used with CONTINUE statements, with code

continuing on subsequent lines.

Source Code

send_id = isend(...)

END IF

i0 CONTINUE I0

END

Instrumented Code

send_id = ...

END IF

CONTINUE

CALL stop_trace

CALL mon_term

CALL proc_end (3,0)

END

Example 3-3: Using a CONTINUE Statement with a Label

3.4.2. Warning Messages During Compilation

The instrumentor inserts instrumentation conservatively, which may result in the

placement of instrumentation calls in positions where they will never be reached. For ex-

ample, the three calls inserted in the previous example are inserted before both STOP and

END statements. If a STOP precedes an END statement in the source code, the three calls

following the STOP will never be reached. The compiler may warn you in such cases about

the presence of unreachable statements. They will not cause an error, however.

3.4.3. Warning Messages During Execution

At the end of an instrumented host program's execution, a message indicating that the host

is doing an illegal iprobe may appear:

(host) iprobe: No pid defined

This is again due to conservative insertion. Since it happens only after the monitor has

finished tracing, the erroneous probe does no harm. Sometimes at the beginning of an instru-

mented host program's execution, the same error may occur but will stop execution. This

happens when a construct (usually a loop, but sometimes a subroutine) is instrumented

21

beforea call to load. When this occurs,re-instrumentationof the codewithout thosecon-

structsselectedwill fix theproblem.

3.4.4. What is Not Instrumented

The constructs that areinstrumentedarelisted in Appendix B. Note that cprobe,
csendrecv, gcol, gcolx,gsendx, hsend, hsendrecv, isendrecv, killproc_sg-

canc ei, wai ta i i,andwa i tone, among other constructs,arenot instrumented automati-

cally.To record information about those routines,you can use the insert_marker and

block_begin /end instrumentor directives.

3.5. Preprocessing Programs

C programs (and to a lesser extent, FORTRAN programs) rely heavily on the preprocessor

to resolve macro definitions before the actual parser is applied to the source code. Since the

instrumentors only have native parsers in them, it may be necessary to pass the source code

through a preprocessor stage in order for the code to be recognizable by the parsers. To this

end, AIMS provides mechanisms by which the user can specify how (as well as if) a file

should be preprocessed.

The preprocessor invocation is specified as a straight command (minus the file names).

Since the invocation may differ for host programs and node programs, there can be separate

templates for each of these cases. For example, the invocation for a C preprocessor on a node

module might be: icc -E. The command may be specified in an environment variable, on

the command line, under the Options menu of xinstrument or as the default given at compile

time. Two environment variables are recognized by AIMS instrumentors (the instrumen_

programs and xinstrument): AIMS_PP_COMMAND & AIMS_PP_0PTIONS. In addition,

AIMS' instrumentors can accept these definitions on the command line using the following

switches:

-pp_command <preprocessor command>

-pp_options <switches>

To specify the preprocessor command as the default one given at compile time, the file

Makefile. template in the instrumentor's directory should be modified. Within this

file, under the heading for the desired platform (f77-nx-node, f77-nx-host, c-nx-

node or c-nx-host) are the platform specific variables: PP_COMMAND and

PP_OPTIONS. In all cases, definitions given on the command line override those specified in

environment variables which, in turn, override their default values.

22

4. Run-Time Performance Monitoring Library

The run-time performance monitoring library contains a set of routines which function as

"event recorders" by measuring the behavior of the instrumented program on a parallel

machine. These event recorders are placed by the instrumentor into the instrumented code;

they are responsible for generating a trace file to be used by the analysis tools. Figure 4-1

illustrates the basic function of event recorders during the monitoring phase using the

example from Figure 3-1. Note that the event recorders write records into a buffer that is

only intermittendy written to disk. Since writing the buffer to disk is a time-consuming

process that can affect the execution pattern of the application, AIMS provides a number of

ways to specify the size of the buffer and how often the buffer is emptied. The following

sections describe the monitor's parameters, and explain the process of linking the monitor's

routines with instrumented code.

Record Buffer

Figure 4-1. Inserted Event Recorders Generating Trace Records

4.1. Monitor Parameters

The operation of the monitor is controlled by several user-settable parameters, such as the

name of the trace file and the size of the monitor buffer. These parameters are set in the

initialization file . MONITOR which must reside in the directory from which the instrumented

application is launched. Although all the parameters described below have default settings,

they may not be appropriate for all applications. Experimentation may be required since it is

sometimes difficult to exactly predict what level of monitoring is needed. Any subset of these

options may appear in any order in the . MONITOR file. A section explaining how to set their

values follows.

4.1.1. TI_C_--_F T LE

All generated events are uhimately written to a disk file. The TRACE_FILE parameter

specifies the name of that file. Because trace files can be several megabytes long, it is impor-

tant to place the file where there is enough storage. If the iPSC/860 Concurrent File System

(CFS) is the one of choice, this trace file will only contain data from the processor nodes; the

host data will be written to a different file (see the H_TRACE_FILE parameter). The default

23

file name depends on other settings in the configuration. If the application is running host-

less or if the file mode (see below) specifies to use the CFS, then the default is

/cfs /$USER/TRACE. OUT; otherwise,itis./TRACE. OUT.

4.1.2. H_TRACE_FILE

The file specified by the H_TRACE_FILE parameter contains the events generated by the

instrumented program run as the host. This file is used only when there is a host program

(see below), and the nodes have been directed to use the CFS. The default file name for

H_TRACE_FILE is HTRACE. OUT.

4.1.3. FILE_MODE

The FILE_MODE parameter specifies the file system being used to store the trace data

output by the monitor. A value of 1 indicates the CFS file system, which is the fastest way to

write large trace data files to disk. A value of 0 indicates that the nodes should write to a file

system attached to the front-end host.

The nodes write tO the front end by sending messages to the host; the host then writes the

records to disk _. Specifically, when a node flushes its record buffer, it repeatedly calls csend

to transmit small blocks of data to the host until its buffer is empty. The host repeatedly

probes for these messages and writes the data to disk as they are received.

Writing to the CFS is typically much faster than the process for the frond end described

above; thus, the use of the CFS is recommended. Note that if the CFS is used (i.e.,

FILEMODE = 1), the file specified in the TRACE FILE variable must have the appropriate

CFS path in it.

4.1.4. HOST_PROGRAM

The HOST_PROGRAM parameter informs the monitor whether the application has an in

strumented host program. The default value for this parameter is 0, which indicates no host

program is being used. If this parameter is not set to i when a host program exists, the

monitor initialization process may fail. Note that hostless programs must locate the trace file

on the CFS, as described in the previous section.

4.1.5. TRACE_LEVEL

The TRACE_LEVEL parameter determines when the monitor will generate trace records.

The lower is the value of this parameter, the fewer are the records produced. There are four

possible levels, the default being level 3:

level0 -- generate TRACE_BEGIN, TRACE_END_BLOCK_BEGIN, BLOCK_END, and

MARKER records

level1 -- generate level0 records + PROC_BEGIN and PROC_END records

Note that hostless programs therefore need to have their trace files on the CFS.

24

level 2 -- generatelevel 1 records+ GLOBAL_BEGINandGLOBAL_ENDrecords
level3 -- generatelevel 2 records+ message-passingrecords

Sincethe defaultlevel is 3, themonitor generatesall recordsunlessspecifiedotherwise.
Somerecordswill be generatedevenif anegativelevel is specified:MON_BEGIN,MON_END,
FLUSH_BEGIN, FLUSH_END, DEFINE_GRID, and3EFINE_GRID_NODE.

Appendix B liststhe monitor's event recorders(with the source code constructsthey re-

place or surround) and the tracerecords they produce.

4.1.6. BLOCK ON_ALT._SYNC

If the value of the BLOCK_ON_ALL_SYNC parameter is non-zero, the monitor will generate

a pair of records for each call to csend and crecv, one at the beginning and one at the end.

This allows the analysis tools to determine the length of time the node was blocked on those

routines. If the value is 0, however, the monitor will generate only one record for a c s end,

indicating the start of the send. Thus the analysis tools will not count the time spent inside

the c s end as blocking time, but as busy time. In addition, the monitor will execute an

iprobe before each crecv, and if the probe indicates that the message is present, it will

generate only one record for the crecy at the completion of the call. Thus the time spent in

such crecvs will also be considered busy, rather than blocked.

A zero value will result in a smaller trace file than a non-zero value, but will cause the

monitor to do some extra probes (prior to crecvs), and the analysis tools will not indicate

blocking on csends and quick crecvs. Thus a non-zero value is likely to be a good choice

when the trace file is not too big and when the time spent blocking on csends may be signif-

icant.

The default for BLOCK_ON_ALL_SYNC isl.

4.1.7. BUFF_-R_SI"7-R

The BUFFER_SIZE parameter sets the number of bytes to be allocated for the temporary

storage of trace data on each node. It is important not to set this value too low or too high for

the application. If BUFFER_SIZE is very small, the monitor will flush data often and thus

affect overall performance. If BUFFER_SIZE is very large, the monitor may compete with

the application for node memory resources. The default buffer size is set at 2 5 6 kbytes.

4.1.8. FLUSH_MODE

The monitor provides two different policies for flushing performance data or trace records

from node memory to disk. The policy chosen will determine the action taken when the

node's record buffer fills up. If the FLUSH_MODE is non-zero, the default, a node will flush

its buffer when the buffer is full. If the value of FLUSH__MODE is 0, the node will not flush its

buffer until an explicit flush_trace is called (see instrumentor directives in Section 3.3) or

the program terminates. The nodes cease collecting data until the buffer is emptied. The

user may, therefore, lose some data if the buffer is full before f lushtrace is called.

25

Thedefault option, emptyingbufferswheneverthey fill up, cancauseirregularities in the
program'sexecution,especiallyif thedatabuffer is small and flushing is slow. Settingthe
valueof FLUSH_MODEto 0 allows theuser to specifywhen datashouldbe flushed,making
the affecton the patternof executionassmall aspossible.

4.1.9. PROFILE

A subset of instrumented constructs to monitor may be selected by Specifying a profile. The

profile is a table of Boolean flags containing an entry for each construct found in the

application. Profiles are created by xinstrument (see section 3.1.2). The default is to moni-

tor all instrumented constructs. The TRACE LEVEL parameter takes precedence over any

profile setting.

4.1.10. APPL_DB_FILE

The instrumentors encapsulate information about the structure of an application program

into an application database file which is subsequently included in the trace file by the moni-

tor. By default, the instrumentors store this information in a file named APPL_DB located in

the directory containing the instrumented code. If the name of the application database was

changed in xinstrument (see section 3.1.1) from the default to another name, that new name

must be specified using this parameter.

4.1.11. Examples of. MONITOR Files

To set the values for the above parameters, a file called . MONITOR should be created. Lines

in that file should have the form:

<parameter name>: <parameter value>

Lines beginning with a "#" denote comments. It is important that the last value in the ini-

tialization file is followed by a <Return>; otherwise, the monitor will not read the final pa-

rameter. The . MONITOR file should be placed in the directory from which the instrumented

code is run. The following examples may give a clearer understanding of some of the uses of

the . MONITOR file to control the behavior of the monitor.

Example 4-1: If a hostless program is to be run and is expected to generate a lot of data, an

initialization file could look like this.

TRACE_FILE:

H_TRACE_FILE:

FILE_MODE:

FLUSH_MODE:

/cfs/mydir/BIG_TRACE

HOST_TRACE

1

0

The CFS file system is used, so the nodes can flush quickly (since they'li have to flush often).

The FLUSHMODE is set to 0, so the flushes can be indicated in the code. Again,

BLOCK ON ALL SYNC is left atl, in case blocking on csends is significant.

26

Example4-2: If aprogramthat potentially producesvolumesof datais to beused,but
perturbation is to beminimized, thesizeof the tracefile is to be limited, and the focusto be
only on a few things, then the .MONITORfile shouldlook like that shownbelow.

TRACE_FILE:

H_TRACE_FILE:

FILE_MODE:

HOST_PROGRAM:

BUFFER_SIZE:

TRACE_LEVEL:

/cfs/mydir/FOCUSED_TRACE

HOST_TRACE

1

1

524288

0

The buffer size is increased so that only one flush is done, at the end. The TRACELEVEL is

set to 0; thus, the user can insert instrumentor directives such as insert__marker and

beginblock to instrument only those constructs of interest.

4.2. Linking with the Monitor

In order to compile instrumented code, it must be linked with the monitor's libraries. Node

programs are linked with the node library nodelib, a, and the host program, if it exists,

with the host library hos tl Lb. a. The location of these libraries is specified during

installation (see Appendix A). The original source code should also be linked with the ap-

propriate stub file found in the mist directory (either stub. c or stub. f) if it contains in-

strumentor directivessuch as insert_marker, begin_block, or flush_trace. For

example, a makefile used for compiling instrumented code might contain the following lines:

#Specify location of AIMS' monitor

MON LIB = $ (AIMS_DIR)/lib

#Link application with monitor libraries

host :

$(F77) -o host_program $(HOST_OBJS)\

$ (NON_LIB)/hostlibJa $ (HOST_LIB)

node :

$ (F77) -o node_program $ (NODE_OBJS) \

$ (MON_LIB)/nodelib. a

27

5. Examining the Trace File

The VK and tally programs offer different ways of examining the data collected by the

monitoring routines. With VK, the trace file can be viewed using a variety of animated views

that depict the program's changing state as time passes, tally collects and tabulates statistics

that reflect the cumulative activity of the program. These two tools are described below, in

sections 5.2 and 5.3. Section 5.1 covers the preliminary step of sorting the trace file.

5.1. Sorting the Trace File

Before using the analysis tools, the trace file must be sorted. While the records for each

node are already sorted by time within the trace file, the records for different nodes are inter-

leaved, and may therefore be out of order. AIMS provides a tracesort tool for sorting trace

files.

tracesort <tracefile> > <sorted_tracefile>

tracesort sorts the events in an AIMS trace file and writes the output to stdout.

5.2. The View Kernel

The VK (View Kernel) program animates the trace obtained by executing a parallel pro-

gram. VK's animated views present information such as: the different constructs that were

running; the messages sent between nodes; how long messages waited before being pro-

cessed; and how long nodes were blocked. Some of the displays scroll along as time passes,

showing a segment of the program's history, while others show each state in sequence

(drawing over the previous state). Several displays can be viewed at once. The trace file can

be stepped through or visualized at high speed, stopping only when certain subroutines are

invoked. A source code click-back capability allows easy examination of the source code

constructs responsible for trace file events pictured on the display. There are also many ways

to customize the displays to better reflect the design of the monitored program.

The displays that VK provides are: an OverVIEW; two "Boxes" views, Circle and Grid; and

two communication views, Communication Load and Inbox Sizes.

5.2.1. Invoking VK

VK [-start <start time>]

[-stop <stop time>]

[-fixcolors]

[-help]

[sorted trace file]

VK should be invoked from the _ninstrumented source code directory, so that the source

files are available for source code click-back. It may be called with up to five arguments, all

28

optional_. Theapplicationdatabaseis usedto relateidentifiers in the tracefile with
constructsin the sourcecode. ThedatabasethatVK usesto view a tracefile should therefore

be thesameasthe oneusedto instrument theprogramthat producedthe tracefile. To
ensurethis, the monitor insertsthecorrectdatabaseat thebeginningof the tracefile, which
theVK then reads.

VK's -s tart and -stop switchesallow thespecificationof any timesegmentof the trace
file to beviewed. (Pressingthe _ button afterVK pausescontinuespast the time where the

VK stopped.) The valuesshouldbenon-negativereal numbers,which representthe time in
milliseconds. If no -s tart flag is present,VK will beginviewing at thebeginning of the
tracefile. If no -stop flag is present,VK will view to theend of the tracefile (or 1,000,000
msec,whichever comesfirst).

The overall effectof the -f £×¢o2ors flag is to disableVK's color editor,which allows the
changeof colorsassociatedwith variousconstructs. The -fixcolors option should be
usedif VK indicatesthat it is running out of spacefor allocatingcolors. This situation can
occur if running severalVKs at once,or if viewinga tracefile with avery largenumber of
subroutinesand blocks. If amessageappearsindicating that VK cannotallocatea sufficient
number of colors appears,VK shouldbe restartedwith the -fixcolors flagon thecom-
mand line. If this messageappearswhen VK is started,andothersarerunning, the execution
of one of the other VKs shouldbehaltedandthen restartedaswell with the -fixcolors

flag.

If the -help flag is present,VK prints ausagemessageand exits.

The tracefile specifiedon thecommandline shouldbeasortedtracefile. If no tracefile is
specified,the file inst/TRACE. SORTis used.VK canview only one tracefile at a time.

5.2.2. Using VK

After VK is invoked, amenulike the onein
Figure 5-1appearswith anumberof buttons. The

button causesVK to start readingand displaying
the tracefile. If VK waspausedin themiddle of the Figure 5-1. VK's Menu

file, pressing _ will cause it to continue beyond that point. Clicking on _ at the end of the

trace file has no effect; the _ button will reset VK to the beginning of the trace file. Clicking

on D at any time will pause VIC To step through the trace file one record at a time, use the

button.

This X-based application also accepts the -bg, -fg, -bd, -bw, -fn, and -xrm switches. (See Section

6.1.1 for a description of these.)

29

As shownin Figure 5-2,clicking on Views

brings up a list of ways to display the trace file.

VK's views are: OverVIEW, Boxes (Circle),

Boxes (Grid), Communication Load, and Inbox

Sizes. OverVIEW is a scrolling view that shows

the procedures running on each node, and the

messages that are passing between the nodes.

The Boxes views display the status of each node

at the time of the last trace record. The status

information includes the node utilization, the

number of pending messages, and the

subroutine that is executing. The

Communication Load view is a scrolling view

AIMS Program A

Figure 5-2. Views Menu

that displays the message volume over time. Finally, the Inbox Sizes view displays the

volume of pending communication between each pair of nodes.

Many views may be displayed simultaneously, provided there is only one of each type. To

select a view, the Views button should be clicked on, showing a list of views, one of which

must be selected. To close a view, click on the view's name.

If either the identification of a construct in a view is indeterminable, or a view is displaying

something which is not understandable, or the set of various parameters is forgotten, a Help

window can be displayed by typing "FI", "h", or "I-I" in the window. Clicking on the Dismiss

button of the Help window will remove it.

The Construct Legend (see Figure 5-3) is

displayed when the legends button is clicked.

It gives a list of filenames used in producing the

trace file. By clicking with the left button on

any file name, a construct view window for that

file appears. The Node States Legend relates the

colors/bitmaps used in the Boxes views with

node states. The legends are selected by clicking

on the appropriate button in the Legends menu,

just as with the Views menu.

The By Time button, under the Controls menu,

allows the specification of start and stop times, Figure 5-3. Construct Legend

as on the command line, so VK will pause in the middle of a trace file at a specified time.

Times should be specified in milliseconds. To change one of the times, place the cursor over

the value and use the backspace key to edit the value. It is important to remember to hit the

<Return> key after the changes have been made. Failing to do so will cause the VK not to

stop or resume at the specified times.

30

Clicking on anyconstruct lfi the Construct
Viewwindow mentioned above,andthense-

lecting the Enable Breakpoints option of the

Controls menu, causes the VK to stop when-

ever any node enters one of the selected con-

structs. (See Figure 5-4.) Note that since

the Constructs View does not allow the

selection of constructs that were not

instrumented, VK cannot break at these

constructs.

VK alsoprovides a coloreditor,Figure 5-5,

formodification ofcolorsassigned to the

various constructsof an application.For

example, itmight be usefulto colorsimilar

routines the same color, or to change colors

to heighten contrast. To invoke the color

editor, use the ALT-CTRL-right mouse

button. A new window will appear to help

in the adjustment of the color assignment for

that construct. Not all colors may be

changed; the color editor will display an

error window if (1.) a change is attempted to

a fixed color or (2.) a construct does not

have a color to change.

The following sections describe each of

VK's views in turn. The final section covers

some ways to adjust the speed at which VK

processes trace records and mouse events.

5.2.3. OverVIEW

Control by time
_,iii_i_!_:__j'_ . :_i"i_:__i__ _:"!:!i r"'T?:."--:__'_':_:"!i'_:____:

_" _i :::: - :;_"

i,,,! ...:.._.....................................,-_
:!;_;, : -_:::'_2i_:._:_:-

i150.00_i.i... _i_ii:• i _i -_.
;_:_ _!. ,.:........................;..i.............

Figure 5-4. Control by Time vs. Break-Points

The OverVIEW is a scrolling view that dis-

plays the procedures being executed by the Figure 5-5. Color Editor

processors and the messages passing between the processors. Each node is represented by

one row of the display, with its number on the left. Figure 5-6, for example, shows a program

that ran on sixteen nodes. Constructs are indicated by different colors• Messages are drawn

as lines between processors. Periods during which a node is blocked, such as when it is

waiting for a message, are shown in the view's background color. The figure shows many

instances where a node is blocked, usually waiting for a message. Node 0, for example, is

blocked six different times during the period displayed. Any markers the user has set (with

ins err_marker directives) are drawn as thin black lines within procedures, and messages

31

indicating the name of the marker and the time it occurred are printed.

used to show when the nodes flushed their record buffers.

I!i _ OverVIEW

A special bitmap is

0

363.0544 TIME (reset) 386_544

Figure 5-6. OverVIEW

Clicking on a message or procedure bar causes VK to print some information about the

relevant construct. If a desired construct is covered by messages, click with the middle but-

ton. This causes VK to give information about the procedure, rather than a message. If the

<Shift> button is held down while clicking the middle button, a window containing the

code that initiated the event will be displayed. If a message is clicked on with the left/right

button, the following information will be displayed in the shell window used to start up the

VK: the time of the send/receive, which node was sending/receiving, the type of the message,

and the message size. The code relating to the sending of the message will be displayed if the

< Shi f¢> key is pressed while clicking the left mouse button. The code relating to the

receipt of the message will be displayed if the < Shift> key is pressed while clicking the

right mouse button.

Key Presses:

Key_____
b orB

dorD

Fl, h, or H

j orJ
m orM

0 orO

p orP
rorR

t

T

xorX

A.__O.D__

change bar width

toggle whether dividers are drawn

display help window

change jump factor

toggle whether messages are drawn

change node ordering

print pending messages

toggle whether markers are drawn

change minimum time on x-axis

change maximum time on x-axis

chan e scale of x-axis

32

There are many aspects of this view that can be altered. The time scale on the x-axis may

be changed as well as the ordering of the nodes on the y-axis. The drawing of messages and

markers and small lines between procedures (to make it possible to see recursive procedure

invocations) can be made to appear or disappear. The width of the procedure bars can also

be changed. The relevant key presses are listed below. Refer to Chapter 6 for more detail on

these parameters.

Mouse clicks:

Button

left or right

middle

< Shi f t > middle

<Shift> left

<Shift> right

Location

message line

construct bar

construct bar

message line

message line

Action

show information about the message

show information about the construct

show construct code

show code that sent the message

show code that received the message

5.2.4. Boxes Views

The Boxes views show the status of each of the processors at the current time. Each pro-

cessor is indicated by a box; lines or arrows between boxes indicate messages that have been

sent but not yet received. As shown in Figure 5-7, each processor box contains five smaller

boxes.

At the top, in the middle, is the number of the processor.

Just below that is a rectangle indicating the state of the pro-

cessor (busy, blocked, or flushing, as indicated by the Node

States Legend). At the bottom is the name of the procedure

the node is executing. The column to the left indicates the

number of pending messages. If the column is full, then there

are at least maxlnboxCount messages pending. Figure 5-7. A Box

(maxInboxCount is a parameter for the Boxes views, with a

default value of 10. Chapter 6 describes how to set values for view parameters.) The column

on the right depicts node utilization -- the time spent running divided by the total amount of

time spent running or blocked. The color and height of the column both reflect the

utilization. If node utilization is 90%, a red bar will fill 90% of the column, but if utilization

is 10%, a blue bar will fill 10% of the column. (The bar will be black on monochrome

displays.)

The Grid version (shown on the left in Figure 5-8) will display information only if a grid

topology has been defined in the source code with the define_grid andde-

fine_grid.node user directives (see Section 3.3.6).

Key Presses:

F 1, h, or H d_ndow

33

Figure 5-8. Boxes Views: The Grid and Circle Versions

5.2.5. Communication Load

Figure 5-9 shows the

Communication Load view, which

displays either the cumulative vol-

ume (in bytes) or the cumulative

pending messages in the system. The

view is a scrolling bar chart, with

message volume or count on the

y-axis and time on the x-axis. If the

chart is clicked on, Communication

Load prints the volume or count of

pending messages at the time clicked.

The parameters for rescaling this

view are described in Chapter 6.

15168
AGGREGATE COMMUNICATION VOLUME

V

O

L

U

M

E

0

22.9703

Figure 5-9.

TIME (msec) 32.9703

Communication Load View

Key Presses:

Key
a orA

corC

h,H, or ?

j orJ
oorO

s/S

t/T

x or X / y or Y
V

V

w orW

Action

change scale-after value

toggle whether volume or count is drawn

display help window

change jump factor

change scale-to factor

change minimum/maximum scaling operator

change minimum/maximum time on x-axis

change scale of x-axis/y-axis

change minimum value on y-axis

change maximum value on y-axis

change "scale-when" factor

34

5.2.6. Inbox Sizes

The Inbox Sizes view, Figure 5-10,

shows the volume of messages, in

bytes, pending between each pair of

nodes. Colors or bitmaps are used to

indicate the volume, as shown by the

key on the right side of the view.

The numbers in the boxes can be

changed by putting the mouse in the

appropriate box, backspacing to erase

the number, typing in the new

number, and hitting <Return>

when done. In order to change the
Figure 5-10. inbox Sizes View

largest size category and have the

others changed automatically, modify the maxSize parameter. The numSizes parameter can

be changed in order to modify the number of size categories.

Key Presses:

Key______ Action

F1, h, or H display help window

m or M change the maximum size

n or N change the number of size categories

5.2.7. Adjusting VK

If the VK is found to be running too slowly, a non-zero jump factor can be specified for the

scrolling views (such as OverVIEW and Communication Load). The value of this factor, a

number between 0 and 1, inclusive, specifies a minimum fraction of the window that VK

must scroll each time the view needs to scroll (i.e., change the values on its time axis). A

value of 0 causes VK to scroll the minimum amount necessary, but a value of 0.5 will ensure

that VK always scrolls by half a screen. This means VK will scroll fewer times, and will

therefore display things faster, since scrolling is a time-consuming operation. Large jump

factors may cause the animation to look somewhat jerky, however. In general, small jump

factors of about 0.1 speed up VK greatly without disturbing the display too much.

Another trick to speeding up VK is based on the fact that VK takes longer to draw large

views than small ones. So, shrinking some views, especially the scrolling views, may help.

Finally, closing views that are not in use will speed up the execution.

If VK is displaying the trace records too quickly, setting pause times via the Sy Time menu,

or breaking on certain constructs will slow it down. Decreasing the jump factor will also

slow down the animation when viewing scrolling displays. If pictures are moving out of the

35

window too quickly, the scale of the scrolling views can be changed to view a larger segment

of the program.

If VK is not responding quickly enough when clicking on a view or menu, the

vk.eventsLoop parameter may need to be changed. In order to speed up processing, VK

normally checks for X events every eventsLoop iterations (i.e., after processing eventsLoop

trace records). The default value for this parameter is 100, but can be set to any non-negative

integer. It may turn out that even with a value of 0, VK responds slowly. This is probably

because the system running VK maintains a sizable internal queue of X events, all of which

must be processed before a mouse event can be processed. If this is the case, specifying a

non-zero jump factor can alleviate the problem, as the queue of X events can be processed

faster.

5.3. tally

tally generates a list of resource-utilization statistics on node-by-node and routine-by-rou-

tine bases.

The routine statistics give information typically provided by profilers with respect to

amount of time spent in various functions. In addition, it provides easy access to %

communication times in each routine and the significance of the communication time in

comparison with the total program execution time. The statistics can help to quickly

determine the sections of code which needs to be tuned

The output of tally can be used as input to statistical drawing packages such as Excel and

WingZ.

The only input to tally is a sorted trace file. tally relates identifiers in the trace file with

constructs in the source program by using the application database which is part of the trace

file information, tally places its output consisting of a set of tables, on the standard output

as well as in two different summary files.

5.3.1. Calling tally

tally is invoked with a sorted trace file or a -help flag as follows:

tally [-help]

[sorted trace file]

As with VK (see Section 5.2.1), the database tally uses should be the one used to create the

trace file. If the -help flag is present, tally prints a usage message and exits. If no trace file

is specified, tally uses inst/TRACE. SORT. tally places its output, a set of tables, on the

standard output and into two files: tally, summary and ncpu. summary.

36

5.3.2. tally's Output

tally producesseveraltablesof statistics.The first tablepresentsdatafor eachfunction exe-
cuting theprogram. The secondtableprovidescommunicationinformation pernode. Node
statisticsfor eachfunction with communicationsis alsooutput. Thelast two tablescontain
NCPU androutine concurrencystatistics[Ref.4]. Thefirst tableis sortedin descending
order with respectto function executiontimes:

1. Routine: Theroutine index and thenameof the subroutine.

2. Busytime: The amount of time for which the function wasperforminguseful work.
This is the amount of time not spentin communication.

3. Global Blocking:The amountof time aroutine spentin a globalblocking operation.
4. SendBlocking: Theamountof time aroutine spentin a sendoperation.
5. ReceiveBlocking: Theamount of timearoutine spentin a receiveoperation.
6. Life time: The amount of time taken to execute instructions in this function

(excluding the functions called from this function).

7. Percentage Communication: This number indicates the percentage of total execution

time the routine spent in communication.

8. Communication Index: This index takes into account the time spent in the function

with respect to the total time spent in the program, as well as the percentage of time

spent in communication in this function. The lower this value, the lower the impact

on the total program execution time of reducing this function's communication

characteristics.

The second table consists of columns that show the aggregate communication characteristics

of nodes executing the program. The columns are:

1. Node number.

2. Busy time: The amount of time the node spent not performing communication re-

lated work.

3. Global Blocking:

4. Send Blocking:

5. Recv Blocking:

Amount of time spent in a global blocking operation.

Amount of time spent in a send operation.

Amount of time spent in a receive operation.

6. Life time: This is the amount of time the node spent executing the program.

7. Percentage communication: This number shows the amount of total execution time

of the processor spent in communication.

8. Link Contention: This percentage represents the total communication time a node

spent in contention.

The next set of tables provides statistics for routines which perform communications. The

statistics for each of the routines are presented in the form of independent tables. Each table

has entries similar to the ones in the second table, All the tables described above are directed

to standard output and stored in the "tally.summary" file. In addition, the NCPU and routine

concurrency statistics are computed and directed to the standard output while being stored in

a file called ncpu. summary.

37

1400

1200

1000

800

600

40O

Time Usage By Node
2500

Time Usage by Routines

(11 most significant routines)

200

0

25OO

2000

1500

I

I
1000

500

Recv Blocking

Send Blocking

Global Blocking

• Illllllll Busy Time

Comm. Index

--0.009

-- 0.008

-- 0.007

--0.006

--0.005

--0.004

0.003

0.002

0.001

0 0

350 _ 250 Routine Concurrency

NCPU Distribution _ (6 most signinficant routines)

(7 most significant routines) j

30O

_ 1 200 • y2pldge

250 k'_filtery [H m c°mp-ps

IIIsetiv/ I 150, xpldge

200 ly2pldge [I ljacy

xpldge I I _eigv

150 [mcomp_ps I _] Z) [_iypldg e

,oo I

•._ _ "-i.:_:.

0 _ " 0

Figure 5-11. A Potpourri of Graphs Created by Excel 4.0 From tally Output

38

TheNCPU for a givensubroutineand agiven k is the amount of CPU time used by that

subroutine when k processors are busy, divided by k. For example, the NCPU data for a

particular application is plotted in the lower left-hand-corner of Figure 5-11. It is a highly

parallel program: with all (16) of the processors concurrently busy for 325 msecs. During

most of that time, subroutine eigv is executing. If a subroutine spent much time executing

when only a few nodes were busy, this may indicate that the routine inhibits parallelization.

In other words, the subroutine may function as a bottleneck.

The Routine Concurrency data for the same trace is plotted in the lower right-hand-comer

of Figure 5-11. It indicates the amount of time spent by each subroutine when k copies were

executing simultaneously. This view indicates the degree to which each routine was

parallelized. If a routine never has more than a few copies running simultaneously, it may

indicate that the routine is inherently sequential. Note that this property differs from that of

inhibiting parallelism for all subroutines, as described above with the NCPU chart. As ex-

pected, eigv was the most parallelized routine: it executes concurrently on all the processors

for 150 msec.

A great deal of information is output by tally. So, we recommend using a statistical

drawing package to look at the data. To facilitate that process, each row of tally's tables is a

list of numbers or strings separated by tabs. Tables are preceded by a title and separated by a

blank line

39

6. Customizing AIMS

AIMS tools have many parameters that allow one to change things like fonts, initial window

sizes, default locations of the trace file and application database, and specific features of VK?s

views. The parameters have names like xinstrument, height, and

vk. overview, font. The first two sections below explain how to change the default values

of the parameters and how to change the values of certain parameters at run-time. The last

section contains a list of AIMS' parameters, each of which is fully documented in Appendix D.

6.1. Setting Defaults for Parameters

Defaults for each of AIMS' parameters, which are listed in Section 6.3, are built into the

system. However, there are a number of ways one can override these defaults. Indeed, the

user may have to if, for example, the default fonts are not available on their system. The

defaults can be set on the command-line, or in one of several default files.

6.1.1. Specifying Defaults on the Command Line

Several switches are provided to set values for parameters on the command-line. These are

-bg and - fg for background and foreground, -bd and -bw for border color and border

width, and -fn for font. For example, one might type "VK -bg black -fg

chartreuse" for a glow-in-the-dark look. AIMS' tools allow you to specify a trace file and

application database on the command line, as well as specifying other values. (These are

described in the sections documenting the use of each tool.) In addition, you can use the

-xrm switch to specify the value of any parameter, by following the switch with the full name

of the parameter, a colon, and the parameter's value. For example, "ILK -xrm

vk. overview, me s s ageCo 1 o r : magenta" would make it very easy to spot the messages

that OverVIEW draws.

6.1.2. Specifying Defaults in Files

AIMS looks in several files, including . Xdefaults, for defaults. To specify default values

in one of these files, add lines to the file of the form "<default name> : <default

value>". The * notation may be used to specify several defaults with one line. For example,

the line "vk. *. borderWidth : 5" will set the border width of alI of VK?s views to 5. (The *

notation is discussed more fully in many X manuals. See, for example, Section 11.4 in

Volume One, the Xlib Programming Manual, by Adrian Nye.) Lines in a default file that

begin with an exclamation point are treated as comments. A small default file is shown in

Figure 6-1.

6.1.3. How AIMS Finds Defaults

Like many X-based applications, AIMS looks for defaults in four sources in the following

order, until it finds a match:

• Command line

4O

• Filenamed in the XENVIRONMENT variable(or .Xdefaults file,if

XENVIRONMENT is not se[. .

• Database created by the xrdb program (or . Xdefaults file, if xrdb has not been

run)

• /usr /i ib/Xl i/app-de faults/Aims

Thus a command-line value takesprecedence over a value inyour .Xdefaults file,which

in turn takes precedence over one in the system defaults file. If no default value is present in

any of the four sources, AIMS uses its built-in defaults (listed in Appendix D with each

parameter).

' Set default trace file for all X-based tools

*.traceFile: inst/tsort

, Set fonts for VK

vk.*.font: *lucida-medium-r-normal-sans-12-*

vk.help.font: *fixed*medium*-r-*-10-*

' Set jump factor to scroll faster

vk.*.jumpFactor: 0.15

) Position the OverVIEW, and make it long

vk.overview.x: i0

vk.overview.y: 200

vk.overview.width: 800

Figure 6-1. An Example of X-defaults

6.2. Changing VK's Parameters Dynamically

VK allows you to change the value of many parameters while the program is running.

These dynamic parameters are changed by pressing a key in the appropriate window, or by

editing in the Preferences window.

The Preferences window allows you to change VK's stop and resume times. To do this,

bring up the Preferences window, put the cursor over the value you want to change, and use

Emacs-like commands * to edit the value. Remember to hit <Return> in the window when

you are done, or the change will not take affect.

To change a parameter with a key press, you simply move the cursor to the appropriate

window and press the key corresponding to the parameter you want to change. If necessary,

a small window appears where you can enter a new value. The current value is displayed;

you can erase it by backspacing or typing <Control>-U. To enter a new value, just hit

In addition to the usual key strokes and backspace, <Control>-A moves the pointer to the beginning of

the line, <Control>-E moves it to the end, <Control>-K deletes everything to the right of the pointer,
and so forth.

41

<Return> or click on the Okay button. If you enter a value that is not legal, the terminal

beeps. Clicking on _ sets the value back to the previous value, and clicking Cancel resets

the value and removes the editing window.

The following are the keys corresponding to the different parameters.

Pa.rametcr

!vk.<view>.minTime

vk.<view>.maxTime

vk.<view>.jumpFactor

vk.<view>.minValue

vk.<view>.maxValue

vk.<view>.minScalingOp

vk.<view>.maxScalingOp

vk. overview.showMarks

vk. overview.showMessages

vk. overview.barWidthFactor

vk.overview.drawDividers

vk.commLoad.volumeOrCount

vk.commLoad.scaleToFactor

vk.commLoad.scaleWhenFactor

vk.commLoad.scaleAfterValue

vk.inboxSizes.numSizes

vk.inboxSizes.maxSize

(node ordering in overview)

Key

t

T

j orJ

v

V

S

S

r orR

morM

b orB

d orD

corC

o orO

worW

a orA

norN

morM

o orO

6.3.

vk.applicationDatabase

vk.boxes.breakpointsEnabled

vk.circle.borderWidth

vk.circle.height

vk.circle.y

vk.clickback.small, font

vk.commLoad.borderWidth

vk.commLoad.foreground

vk.commLoad.maxCount

vk.commLoad.maxVolume

vk.commLoad.minTime

vk.commLoad.scaleToFactor

vk.commLoad.volumeOrCount

vk.commLoad.y

A Listing of ALMS' Parameters

vk.boxes.maxlnboxCount

vk. circle .background

vk.circle.font

vk.circle.width

vk.clickback.big.font

vk.commLoad.background

vk.commLoad.countColor

vk.commLoad.height

vk.commLoad.maxScalingOp

vk.commLoad.minCount

vk.commLoad.minVolume

vk.commLoad.scaleWhenFactor

vk.commLoad.width

vk.eventsLoop

vk.boxes.spectrumSize

vk.circle.borderColor

vk.circle.foreground

vk.circle.x

vk.clickback.medium, font

vk.commLoad.border Color

vk.commLoad.font

vk.commLoad.jumpFactor

vk.commLoad.maxTime

vk.commLoad.minScalingOp

vk.commLoad.scaleAfterValue

vk.commLoad.volumeColor

vk.commLoad.x

vk.fixColors

42

vk.grid.background

vk.grid.font

vk.grid.width

vk.help.font

vk.inboxSizes.borderWidth

vk.inboxSizes.height

vk.inboxSizes.width

vk.menu.background

vk.menu.font

vk.menu, rifle, foreground

vk.nodeState.running.color

vk.nodeState.blockedReceiving.color

vk.overview.barWidthFactor

vk.overview.font

vk.overview.highlightColor

vk.overview.messageColor

vk.overview.showMarks

vk.overview.x

vk.stopTime

vk.traceRecord.background

vk.traceRecord.font

vk.traceRecord.width

vk.utilizationLegend, font

vk.grid.borderColor

vk.grid.foreground

vk.grid.x

vk.inboxSizes.background

vk.inboxSizes.font

vk.inboxSizes.maxSize

vk.inboxSizes.x

vk.menu.borderColor

vk.menu.foreground

vk.nodeState.font

vk.nodeState.blockedSendingColor

vk.nodeState.blockedGlobal.color

vk.overview.borderColor

vk. overview, foreground

vk. overwew.jumpFactor

vk. over_ew.minTime

vk.overview.showMessages

vk.overview.y

vk. timeStep

vk. traceRecord.borderColor

vk.traceRecord, foreground

vk.traceRecord.x

vk.grid.borderWidth

vk.grid.height

vk.grid.y

vk.inboxSizes.borderColor

vk.inboxSizes.foreground

vk.inboxSizes.numSizes

vk.inboxSizes.y

vk.menu.borderWidth

vk.menu.title.font

vk.nodeState.notTracing.color

vk.blocked.color

vk.overview.background

vk.overview.borderWidth

vk.overview.height

vk.overview:maxTime

vk.overview.showDividers

vk.overview.width

vk.startTime

vk.traceFile

vk.traceRecord.borderWidth

vk.traceRecord.height

vk.traceRecord.y

43

7. References and Bibliography

[1] T. Lehr, Z. Segall, D. Vrsalovic, E. Caplan, A. Chung & C. Fineman. "Visualizing

Performance Debugging". Computer, October 1989, pp. 38-51.

[2] G.A. Geist, M. T. Heath, B. W. Peyton, P. H. Worley "PICL -- A Portable Instrumented

Communication Library" Tech Report ORNI_/TM-11130, Oak Ridge National Laboratory. May

1990.

[3] M. Heath and J. Ethridge. "Visualizing the Performance of Parallel Programs". IEEE Software,

Vol. 8, No. 5, Sept. 1991, pp. 29-39.

[4] T.E. Anderson and E. D. Lazowska. "Quartz: A Tool for Tuning Parallel Program Performance".

In Proceedings of SIGMETRICS "90 Conference on Measurement and Modeling of Computer Systems,

May 1990, pp. 115-125.

• Mehra, P., "Grammar-Driven Interpretation of Tracefiles: Applications in Modeling and

Visualization of Message-Passing Parallel Programs" submitted to The 1994 Scalable High-

Performance Computing Conference(SHPCC 94), Knoxville, TN May 1994.

• Mehra, P., C. Schulbach, and J. Yan, "A Comparison of Two Model-Based Performance Prediction

Techniques for Message Passing ParalIel Programs". Submitted to ACM Sigmetrics Conference at

Nashville, TN, May 16-20, 1994.

• Mehra, P., M. Gower, and M. Bass, "Automated Modeling of Message-Passing Programs," Proc.

Int'l. Workshop on Modeling, Analysis and Simulation of Computer and Telecommunication Systems

(MASCOTS 94), IEEE Computer Society Press, Durham, NC, Jan. 1994.

• Sarukkai, S., "Scalability-Analysis Tools for SPMD Message-Passing Parallel Programs," Proc. Int'l.

Workshop on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, IEEE

Computer Society Press, Durham, NC, Jan.1994.

• Sarukkai, S., and Gotwals J., "Analyzing Data Structure Movements in Message Passing

Programs," Submitted to ACM Sigmetrics Conference at Nashville, TN, May 16-20, 1994.

• Sarukkai, S., and Jerry Yan, "Integration of Perturbation Analysis and Application Monitoring

Tools for Message Passing Parallel Programs, " submitted to IEEE Transactions on Parallel and

Distributed Computing Systems.

• Yan, J. C. and C. E. Fineman, Modeling Parallel Programs and Multiprocessor Architectures with

AXE, Contractor Rep. 177582, NASA Ames Research Center, Moffett Field, CA, May1991.

• Yan, J. C., Schmidt M. and Sarukkai, S., "Monitoring the Performance of Multidisciplinary

Applications on the iPSC/860", submitted to The 1994 Scalable High-Performance Computing

Conference(SHPCC 94), Knoxville, TN May 1994.

• Yan, J., C. "Performance Tuning with AIMS - An Automated Instrumentation and Monitoring

System for Multicomputers," Proc. 27th Hawaii Int'l. Conf. on Systems Sciences, ACM, Jan. 1994.

• Yan, J., C. Fineman, P. J. Hontalas, M. Schmidt, S. Listgarten, P. Mehra, S. Sarukkai, and C.

Schulbach, The Automated Instrumentation and Monitoring System (AIMS) Reference Manual, NASA

Ames Research Center, Moffett Field, June 1993.

44

Appendix A. Installation Guide

Installing AIMS requires three steps: creating the source tree, compiling the system, and

installing the executables. Various portions of AIMS may be installed on different machines.

The source code is distributed in tar format. Once the tar file has been obtained, a

directory for AIMS should be created and the tar file should be "untarred" into that

directory. For example,

mkdir aims_source

mv aims.tar aims_source

cd aims_source

tar xof aims.tar

rm aims.tar

After untarring the file, the source directory should have a Make f i 1 e and nine subdiree

tories: common/, example/,misc/, monitor/, poem/, poem spec/, parsers/,

tools/, and notes/. Once the source tree has been created, the source can be compiled.

To do this, the Make f i 1 e in the top-level directory should be edited first. The following

may need to be changed: compilation directives, installation directories, location of X 16

braries, location for default files, and other system-specific definitions. These are discussed in

tum below.

The compilation directives indicate which parts of AIMS are to be created. A component

will be "made" only if its value is 1. For example:

MONITOR=0

INSTRUMENTORS=0

VK=I

TALLY=I

TRACESORT=I

When AIMS is "made" and installed in the appropriate directories, the items with a value of 1

are "made" and installed.

The installation directories indicate where the executables should be located. The directory

for the monitor is specified separately, as it is a library rather than an executable. For ex-

ample:

INSTALL_DIR = $(HOME)/bin

MONITOR_INSTALL_DIR = $(HOME)/Iib

MAN_INSTALL_DIR = $(HOME)/man

The monitor installation directory should be remembered when linking the instrumented

code with the monitor libraries.

45

In the next sectionof the Makefile, the location of theX include filesand thelibraries
shouldbespecified.Thevaluesof the DEFAULTS_FILEand DEFAULT_DESTmacrosare
usedfor installing the system'sdefault.Somedefaultfilesarelocatedin AIMS' misc/
subdirectory. They are defaults, sgi, defaults, sunos, color,

defaults, ultrix, color, and defaults, ultrix, mon. One oftheseshould be speci-

fiedas the default file, or a new one should be created as described in Chapter 6. The system

default file is installed in DEFAULTS_DEST, which is normally

/usr/lib/Xll/app-defaults/Aims. IfDEFAULTSDEST is/dev/null, no system

default file will be installed, and AIMS will use built-in values.

Next comes a variable that defines the target platform the system is being built for. That is,

it defines the target machine and source language. The latest version of AIMS supports C and

Fortran under the NX operating system on IPSC/860's. CURRENTLY, A DIFFERENT AIMS

SYSTEM MUST BE BUILT FOR EACH PLATFORM. THIS MEANS THAT IF THERE ARE

USERS OF DIFFERENT PLATFORMS, THERE MUST BE TWO COLLECT!ONS OF

BINARIES (e.g. one for Fortran_ on the host, one for C on the node, etc.). The libraries can be

shared for a given architecture.

Finally, there are a few other system-specific definitions required for compiling the system.

They are grouped into three sections, depending on whether the machine is running IRIX,

Sun OS, or Uhrix. Uncomment the lines corresponding to the system of choice through the

removal of the pound signs, ensuring the other lines are commented out. When all changes

have been made to the Nakefile, "make" should be typed from the source directory. The

system will take about 30 minutes to compile. When the compilation has completed, "make

install" should be typed to install the system in the directories specified in the Nakefile.

If the full system was created, the following will be in the installation d!rectory:

translates AIMS tracefile_h format

inst-f77-nx-node

inst-f77-nx-host

inst-c-nx-node

inst-c-nx-host

load-f77-nx-node

load-f77-nx-host

load-c-nx-node

load-c-nx-host

programs that instrument source code

programs used by the instrumentor to load files

and create/update an application database

tally program that tabulates statistics from the trace
file

tracesort

xinstrument

VK

program which sorts a _ra¢e file
X-based instrumentor

pro_gram that graphically displays the trace file

The monitor installation directory will contain two files, nodelib, a and hostlib, a.

46

Appendix B. From Source Code to Trace Records

The tables on the following pages show the trace records generated by various source code

constructs, along with the names of the monitor routines that produce the trace records*.

Only those constructs listed in the tables produce trace records. Among the constructs that

do not produce trace records are the following: cprobe, csendrecv, gcol, gcolx,

gsendx, hsend, hsendrecv,isendrecv, killproc, msgcancel, waitall, and

waitone.

Many tracerecords are produced only conditionally;the conditions arelistedin the fourth

through seventh columns of the tables.The fourthcolumn specifiesifthe constructmust

occur on the host or node in order to generate a record. If no value is specified, then the

record is produced in either case. Many constructs must be selected in the file's profile before

they generate trace records. Such constructs are indicated with a check mark in the fifth

column. The value of the monitor parameter EVENT_LEVEL affects the production of many

records; this is indicated in the sixth column. For example, a 1 there indicates that the record

will be produced only if the event level is at least 1. (If this column has no entry, then the

record will be produced regardless of the event level, even if the level is negative.) The last

column indicates other miscellaneous conditions that may apply.

Source Code

Construct

Beginning of
_rogram

Call to set_pid

Call to load

End of program

Monitor

Event

Trace

Record

MON_BEGIN

TRACE_BEGIN

PROC_BEGIN

recorder

mon_init

start_trace

proc_be_n

mon setpid

mon_init

start_trace

proc_begin

stop_trace

mon_term

TRACE_BEGIN

PROC_BEGIN

TRACE_END

FLUSH_BEGIN

FLUSH_END

MON_END

Conditions on

Production of Trace Record

Node/ Profile Event Other

Host Lvl.

Node Only node 0 sends
Node 0 this.

Node _] 1

Host 0

Host "_ 1

0

Node

Node

tEvent recorders that apparently produce no trace records perform other functions for the monitor.

47

Source Code Monitor Trace

Construct Event

recorder

STOP statement

Call to relcube

Call to killcube

Call to be-

gin_trace

proc_ends

stop_trace

mon_term

Record Node/

Host

PROC_END

TRACE_END

FLUSH_BEGIN

FLUSH_END

MON_END

Node

Node

proc_end

stop_trace

mon_term

proc_end

stop_trace

mon_term

start_trace

PROC_END

TRACE_END

MON_END

PROC_END

TRACE_END

MON_END

TRACE_BEGIN

Conditions on

Production of Trace Record

Profile Even1 Other

Lvl.

4 1

0

Call to endtrace stop_trace TRACE_END

Beginning of
function or proc_begin PROC_BEGIN
subroutine

Host 4 1

Host 0

Host

Host %/ 1

Host 0

Host

End of function
or subroutine

Return statement

Call to be-

_in_block

Call to

end. block

Call to in-

sen_marker

Call to a global
routine y

Call to csend

Invocation of
[send

proc end PROC_END

proc_end PROC_END

block_begin BLOCK_BEGIN

r,

block_end BLOCK_END

point_marker MARKER

global_start GLOBAL_BEGIN

global_end GLOBAL_END

sync_send SYNC_SEND

SYNC_SEND_BLK

SYNC_SEND_UNBLK

async_send ASYNC_SEND

Node

Node

0

0

4 1

_/ 0

o

4 0

2

_/ 3 If BOAS _ = 0

3 If BOAS = 1

3 If BOAS = 1

,/ 3

_This mcludescaHsto _efoHowing: gsync, gdhigh, gdlow, gdprod, gdsum, giand,

gihigh, gi!ow, gior, giprod, gisum, gixor, gland, glhigh, gllow, glor,

glprod, glsum, glxor, gshigh, gslow, gsprod, gssum, and gopf.

_BOASisanabbreviauonfor _e momtor'sBLOCK ON ALL_SYNC parameter.

48

Source Code

Construct

Call to crecv

Invocation of
trecv

Call to msgwait

Call to
flush_trace

Call to de-

fine_grid

Call to de-

line_grid_node

Any construct
that produces
records

Monitor

Event

recorder

sync_recv

async_recv

monmwait

flushtrace

set_config

define_node

Any event
recorderthat
_roduces
records

Trace

Record

SYNC_RECV

SYN C_RECV_BLK

SYN C_RECV_UNBLK

ASYN C_SEND__BLK

_,SYN C_SEND_UNBLK

ASYN C_RECV BLK

ASYN C RECV_UNBLK

FLUSH_BEGIN

FLUSH_END

DEFINE_GRID

DEFINE_GRID_NODE

FLUSH_BEGIN

FLUSH_END

Conditions on
Production of Trace Record

Node/ Profile Event Other

Host Lvl.

Node

Node

_1 3 If BOAS -- 0 and

msg. has arrived.

_] 3 If BOAS -- 0 and

msg. hasn't arrived,

or BOAS = 1

q 3 If BOAS = 0 and

msg. hasn't arrived,

or BOAS = 1.

Node

Node

3 If waiting on send.

q 3 If waiting on send.

_] 3 If waiting on receive.

q 3 If waiting on receive.

If record buffer is full.

If record buffer is full.

49

Appendix C. Trace Records

This appendix provides information on AIMS' trace records. The first table lists the records,

along with their numerical identifiers, trace level thresholds, and formats. The second

section describes the format of each record, and the third the meanin ,f each record.

Name ID Trace Format

C. 1. A Listing of AIMS Trace Level

Records TRACE_BEGIN 0 0 S

The table to the right lists AIMS' TRACE_END 1 0 S

trace records: The numerical identi- PROC BEGIN 2 1 C

tier for each is shown in the second PROC END 3 1 C

column. This identifier appears in BLOCK_BEGIN 4 0 C

the trace file, rather than the full BLOCK END 5 0 C

name of the record. The third col- MARKER 6 0 C

umn indicates how large the moni- GLOBAL_BEGIN 7 2 C

tor's TRACE_LEVEL parameter must GLOBAL_END 8 2 C

be in order for the record to be gen- SYNC SEND 9 3 M
SYNC_SEND_BLK 10 3 M

erated. Those records thatare pro-

duced regardless of the value of the SYNC_SEND_UNBLK 11 3 SM

TRACE LEVEL parameter have no ASYNC SEND 12 3 M

entry in the third column. (The full ASYNC_SEND_BLK 13 3 SM

list of conditions under which each of ASYNC_SEND_UNBLK 14 3 SM

these records is produced can be SYNC_RECV 15 3 M

found in Appendix B.) The fourth SYNC_RECV__BLK 16 3 SM

column indicates the format of the SYNC_RECV_UNBLK 17 3 M

record. (S: Short Format; C: Code ASYNC_RECV_BLK 18 3 SM

Block Format; M: Message Format; ASYNC_RECV_UNBLK 19 3 M

SM: Short Message Format; F: Flush MON_BEGIN 20 C

Format; T: Topology Format) The MON_END 21 S
FLUSH_BEGIN 22 Fformats are described in the next

section. FLUSHEND 23 F

DEFINEGRID 24 T

C.2. Trace Record Formats DEFINE_GRID_NODE 25 T

There are six different trace record formats, as described below. Each format consists of

several fields, all of which are printed on one line in the trace file and displayed by VICs Trace

Record view.

C.2.1. Short Format

The short format consists of four fields:.

• Trace record identifier

50

• Time of event(seconds)

• Time of event (microseconds)

• Node on which event o_curred t

This format is used for the following trace records:

MON_ END.
TRACE_BEGIN, TRACE_END, and

C.2.2.

The

fields:

Code Block Format

code block format consists of the fields in the short format, followed by two additional

File identifier

Object identifier

The two identifiers are used with the application database to relate trace file events to

source code constructs.

This format is used for the following trace records: PROC_BEGIN, PROC END,

BLOCK_BEGIN, BLOCK_END, MARKER, GLOBAL_BEGIN, GLOBAL_END, and MON__BEGIN.

C.2.3. Message Format

message format consists of the fields in the short format, followed by six additionalThe

fields:

Other node participating in message

Type of message

Size of message

File identifier

Object identifier

Message identifier

The file and object identifiers are used with the application database to relate trace file

events to source code constructs. The message identifier is used only for asynchronous
transmissions.

This format is used for the following trace records: SYNC SEND, SYNC_SEND_BLK,

ASYNC_SEND, SYNC_RECV, SYNC_RECV_UNBLK, and ASYNC_RECV_UNBLK.

C.2.4. Short Message Format

The short message format consists of the fields in the short format, followed by three ad-
ditional fields:

• File identifier

• Object identifier

• Message identifier

The host is represented by the number -32768.

51

The file and object identifiersareusedwith theapplicationdatabaseto relatetracefile
eventsto sourcecodeconstructs. Themessageidentifier isusedonly for asynchronous
transmissions.This format is usedfor thefollowing tracerecords: SYNC SENDUNBLK,
ASYNC_SEND_BLK, ASYNC_SEND_UNBLK, SYNC_RECV_BLK, and ASYNC_RECV_BLK.

C.2.5. Flush Format

The flush format consists of the fields in the short format, followed by seven additional

fields:

• Accumulated flush time (seconds)

• Accumulated flush time (microseconds)

• Flush time (microseconds)

• Bytes

This format is used for the following trace records:

• Flush time (seconds)

• Count

• Total bytes

FLUSH_BEGIN and FLUSH_END.

C.2.6. Topology Format

The topology format consists of the fields in the short format, followed by two additional

fields:

• Row • Column

This format is used for the following trace records: DEFINE_GRID and

DEFINE_GRID_NODE.

C.3. Trace Record Interpretation

The analysis tools read the trace file to find out when a node began a new code block, when

it was blocked, when it sent a message, and when it received a message.

The following trace records indicate that a node is entering (or re-entering) a different code

block: PROC_BEGIN, PROC_END, BLOCK_BEGIN, and BLOCK_END.

The following trace records indicate that a node has started blocking: GLOBAL_BEGIN _,

SYNO_SEND_BLK, ASYNC_SEND_BLK, SYNC_RECV_BLK, and ASYNC_RECV_BLK.

The following trace records indicate that a node has finished blocking: GLOBAL_END,

SYNC_SEND_UNBLK, ASYNC_SEND_UNBLK, SYNC_RECV_UNBLK, &

ASYNC_RECV_UNBLK.

The following trace records indicate that a node has sent a message: SYNC_SEND,

SYNC_SEND_BLK, and ASYNC_SEND.

The following trace records indicate that a node has received a message: SYNC_RECV,

SYNC_RECV_UNBLK, and ASYNC_RECV_UNBLK.

"_Note that time spent in global operations is considered by the analysis tools to represent time spent
blocked. This is because in general any significant time spent in such operations is due to synchronization

delays.

52

Appendix D. AIMS Parameters

This appendix describes all of the user-settable parameters of AIMS' X-based tools. It is

divided into several sections, which identify the parameters for xinstrument, and VK (general

parameters) respectively. Each feature is described by its name, the function it performs, the

type of its value (e.g., integer, real, string), the default value, and its update mode (dynamic

features can be changed during run-time, while static features have their values fixed

throughout the program's execution). Dynamic features are listed with the key used to

change its the value during run-time. Some dynamic features are not changed via a key press,

but via the Preferences menu. This is also noted where relevant.

D.1. xinstrument Parameters

xinstrument allows you to specify the main window's dimensions, as well as locations of

the application database and output directory.

Name:

Function:

Type:

Update mode:

Key:

xinstrument.width and xinstrument.height

These specify the width and height of xinstrument's main window.

integer Default: 350 and 450

dynamic

(None. You can resize the window with the mouse.)

Name:

Function:

Type:

Update mode:

xinstrument.applicationDatabase

This specifies a default location for the application database.

string Default: appl_db

static (But the value can be over-ridden with a command-line argument.)

Name:

Function:

Type:

Update mode:

xinstrument.outpu tDirectory

This specifies a default directory for the instrumented files.

string Default: inst

dynamic (You can change the value by editing xinstrument's window.)

D.2. VK Parameters

VK has many parameters that you can adjust. Those that pertain particularly to the views

are covered in Section D.2.2, while the remainder, dealing with the trace file, fonts, menus,

and the like, are listed in Section D.2.1.

D.2.1. General VK Parameters

Note that values specified for these parameters on the command-line will override those

present in the defaults file. For example, if you specify in your . Xdefaults file that

vk.traceFile is trace1, but you invoke the VK by typing "VK trace2", then you will view the

file trace2, not trace1. This is described more thoroughly in Section 6.3.

Name: vk. t raceFi le

Function: This specifies the trace file that will be viewed.

Type: string Default:

Update mode: static

inst/TRACE.SORT

53

Name:

Function:

Type:
Update mode:

vk. applicationDatabase

This specifies a default location for the application database.

string Default: appl_db
static (But the value can be over-ridden with a command-line argument.)

Name:

Function:

Type:

Update mode:

vk. startTime

The views will not display anything until the startTime (which is measured in milliseconds)
has been reached in the trace file.

non-negative real Default: 0

dynamic (via Resume Time in the Preferences menu)

Name:

Function:

Type:

Update mode:

vk. stopTime

VK will pause after the stopTime (which is measured in milliseconds) has been reached in
the trace file.

non-negative real Default: 1,000,000

dynamic (via the Preferences menu)

Name:

Function:

Type:
Update mode:

vk. timeStep

This specifies a maximum time interval, in msec, between the times of two consecutively

displayed trace records. For example, if the current trace record has time 100 msec, and the
next has time 103.5 msec, a timeStep of lmsec will cause 3 "fake" records to be created at

times 101,102, and 103. A timeStep of 0 means that no extra records will be created. A non-
zero value causes the views to be updated in a fashion that simulates real time, with fewer

discontinuities. However, it slows the processing down accordingly.

non-negative real number Default: 0 (no extra trace records are generated)
static

Name:

Function:

Type:
Update mode:

vk. breakpoint sEnabled

This determines whether breakpoints will initially be enabled or disabled.

boolean Default: 0

dynamic (via the Preferences menu)

Name:

Function:

Type:

Update mode:

vk. fixColors

A value of 1 for this parameter indicates that VK should not allow you to dynamically change

the colors it associates with the procedures. This is useful for instances when VK runs out of

space for allocating new colors. If VK indicates that it cannot allocate enough colors, restart
VK with this option set to 1. If VK cannot find enough colors upon start-up, and you have

other VKs running, you should restart at least one of those with the colors fixed.

boolean (0 or 1) Default: 0

static

Name:

Function:

Type:

Update mode:

vk. event sLoop

This parameter indicates how frequently VK should check for X events. It will process
vk. eventsr,oop trace records before checking for and processing incoming X events. If

the value of this parameter is large, VK may run faster, since checking for events can be time-

consuming (at the same time, VK's response to user input may be slowed).

positive integer Default: 100
static

Name:

Function:

vk.clickback.sma!l.font, vk.clickback.medium.font,

vk.clickback.big.font, vk.utilizationLegend-font,

vk.nodeStateLegend.font, vk.help.font, and vk.menu.font

Thee speci_ the _n_ to be used for the clickback windows, the help windows, the node

state legend, the utilization legend, and the menus, r_pectively. The _nt _r the help
menus should be a fixed-width bnt.

54

Type:

Default:

string(Thestringvalueshouldbeapatternmatchedbyoneofthefontsavailableonyour
display.Youcanseethelistofavailablefontsbyrunningtheprogramxlsfonts,andviewthe
fontsindividuallywiththeprogramxfd.)
6x10 Updatemode: static

Name:
Function:
Type:

Default:

vk. menu. background and vk. menu. foreground

These specify the background and foreground colors for the VK's menus.

string (This should appear in the file /usr/1 i b/Xl 1/rgb. t xt, or the analogous file on

your system.)
background is white, foreground is black Update mode: static

Name:

Function:

Type:

Default:

Update mode:

vk. menu. borderCoior and vk. menu. borderWidth

These specify the color and width of the menus' borders.
borderColor is a string and borderWidth is a non-negative integer. (The string value should

appear in the file /us r/I ib/Xl 1/rgb. txt or the analogous file on your system. Upper
and lower bounds for the borderWidth are determined by the program.)

borderOolor is dark turquoise, borderWidth is 2
static

Name:

Function:

Type:

Default:

vk. menu. font

This specifies the font to be used for the menus.

string (The string value should be a pattern matched by one of the fonts available on your

display. You can see the list of available fonts by running the program xlsfonts, and view the

fonts individually with the program xfd.)
6x10 Update mode: static

Name:

Function:

Type:

Default:

vk .menu. title, foreground and vk. menu. title, font

These specify the foreground color and font to be used for the menus' titles.

string (The foreground value should appear in the file/usr/tib/Xll/rgb, txt or the

analogous file on your system. The font value should be a pattern matched by one of the
fonts available on your display. You can see the list of available fonts by running the

program xl s font s, and view the fonts individually with the program x fd.)

foreground is black, font is 6x10 Update mode: static

D.2.2. View Parameters

The views that make up AIMS' View Kernel have many features that you can customize.

The first section below describes features common to all of the views. The second and third

sections describe features common to certain classes of views, the scrolling views and his-

togram views. Finally, the fourth section describes those features unique to specific views.

D.2.2.1. General View Parameters

The view kernel currently has the following views: OverVIEAV, Boxes (Circle/Grid),

Communication Load, and Inbox Sizes. Each of these views provides the following options: x

coordinate, y coordinate, width, height, background, foreground, border color, border width,

and font. The <view> portion of the name should be replaced by one of: overview, circle,

grid, commLoad, or Inbox Sizes.

Name:

Function:

Type:

vk. <view>. x and vk. <view> .y

The x and y coordinates specify the position of the window's upper-left comer (actually the

upper-left comer of the window's border) when it is opened. If the coordinates are both 0,
some window managers will let you position the window with the mouse.

non-negative integer (upper bounds are determined by the program)

55

Default: 0and0
Updatemode:static(Thus,if awindowisinitiallypositionedwithitsupper-leftcomerat(100,100),it will

alwaysreopenat(100,100),evenif it ismovedbeforebeingclosedandreopened.)

Name:
Function:
Type:
Default:

Updatemode:
Key:

vk. <view>.width andvk. <view>.height
Thesespecifythewidthandheightoftheview.
non-negativeinteger(upperandlowerboundsaredeterminedbytheprogram)

View
OverVIEW
Boxes(Circle)
Boxes(Grid)
CommunicationLoad
InboxSizes

Width
400
360
240
400
270

Height
220
360
240
220
24O

dynamic
(None.Youcanresizethewindowwiththemouse.)

Name:
Function:
Type:

Default:

vk. <view>. background and vk. <view>. foreground

These specify the background and foreground colors for the window.

string (This should appear in the file/usr/lib/Xll/rgb, txt, or the analogous file on

your system.)
background is white, foreground is black Update mode: static

Name:
Function:

Type:

Default:

Update mode:

vk. <view>. borderColor and vk. <view>. borderWidth

These specify the color and width of the window's border.

borderColor is a string and borderWidth is a non-negative integer. (The string value should

appear in thefile/usr/lib/Xll/rgb, txt or the analogous file on your system. Upper

and lower bounds for the borderWidth are determined by the program.)

borderColor is dark turquoise, borderWidth is 2
static

Name:

Function:

Type:

Default:

vk. <view>. font

This specifies the font that a view will use.

string (The string value should be a pattern matched by one of the fonts available on your
display. You can see the list of available fonts by running the program xlsfonts, and view the

fonts individually with the program xfd.)

6x10 Update mode: static

D.2.2.2. Scrolling View Parameters

There are several parameters that apply only to the scrolling views (currently these are

OverVIEW and Communication Load). The extra features supplied for scrolling views are

the jump factor and the delimiters of the time axis.

Name:

Function:

Type:
Update mode:

vk. <view>. jumpFactor

This specifies a minimum fraction of the window that should be scrolled (shifted to the left)

when scrolling is necessary. For example, if the minimum and maximum times are 150 and
200, and a record comes in at 203, the window would only shift left by 3 msec, with a jump

factor of zero. However, a jump factor of .2 would cause it to shift by 10 msec (.2 *

(200-150)). Higher jump factors cause the window to display trace records faster, since it

doesn't have to scroll as many times. However, the scrolling may appear somewhat jerky

since the window scrolls in larger amounts.
real number between 0 and 1, inclusive Default: 0.0

dynamic Key: j or J

56

Name: vk. <view>. minTime and vk. <view>. maxTime

Function: These specify the minimum and maximum times (in milliseconds) to use for the view's

x-axis.

Type: non-negative real number Default: minTime is 0.0, maxTime is 10.0

Update mode: dynamic Key: t for minTime, T for maxTime

D.2.2.3. Histogram View Parameters

There are a number of parameters specific to a certain class of scrolling views, namely the

histogram views (currently only Communication Load fits into this category). They are the

following: maximum value, minimum value, maximum scaling operator, minimum scaling

operator, scale to factor, scale when factor, and scale after value.

Name:

Function:

Type:

Default:

vk. <view>. minValue and vk. <view>. maxValue

A histogram view is a scrolling view that depicts the changing value of a certain quantity as

time passes. The minimum/maximum values are the initial settings for the y-axis of these

views.

The type varies. For the Communication Load view, these values are integers between 0 and

9,999,999, inclusive.

_ fault Vaiu

] commLoad .minVolume

] commLoad.minCount

[commLoad .maxVolume

[commLoad, minVolume

dynamic Key:Update mode:

0

0

I0000

i00

v _rminValue, V for maxValue

Name: vk. <view>. minScalingOp and vk. <view> .maxScalingOp

Function: A scaling operator determines whether a mirdmax value will be adjusted automatically by the

program. If the scaling operator is "fixed", the value will change only when the user changes

it. If it is "variable", the value will be adjusted automatically by the program. (The way in

which the program makes its adjustments is determined by the values of the remaining three

parameters described below.)

Type: string (one of "fixed" or "variable")
Default: minScal ingOp is fixed, maxScal ingOp is variable

Update mode: dynamic Key: s for minScal ingOp, S for maxScal ingOp

The three features that control the automatic scaling are described below, but first we'll give

a brief description of how the scaling is done. Automatic scaling on the maximum value

works as follows. (It works symmetrically on the minimum value.) If a value needs to be

drawn that is greater than the maximum value, the maximum value is increased. If all of the

values that are depicted are much smaller than the maximum value, and they have been so for

a while, the maximum value is decreased. The value that the maximum value should change

to is affected by the scale-to factor. The definition of "much smaller", as used above, is

defined by the value of the scale-when factor. And finally, the scale-after value specifies the

amount of time during which all of the values should be small before the maximum value is

changed.

Name:

Function:

vk. <view>. scaleToFactor

If a value must change, this determines the number that it will change to. More specifically,

if the maximum value must be changed, it is changed to the new maximum times the

57

Type:

Update mode:

scaleToFactor. If the minimum value must be changed, it is changed to the new
minimum divided by the scaleToFactor.
real number between 1 and 5, inclusive Default: 1.5

dynamic Key: o or O

Name:

Function:

Type:

Update mode:

vk. <view>. scaleWhenFactor

This determines when the resolution along the y-axis can be increased. If all of the bars

displayed are very short (less than the scateWhenFactor of chart's height), then the max-

imum value can be decreased. Similarly, if all of the values are very tall (greater than (1 -

sca!eWhenFactor) of the chart's height), then the minimum value can be increased.
real number between 0 and 1, inclusive Default: 0.5

dynamic Key: w or W

Name:

Function:

Type:

Update mode:

vk. <view>. scaleAfterValue

This determines how long all values must remain small/large (as specified by the scale-

WhenFactor) before the max/min value is adjusted. (The number actually represents the
number of trace records that must be processed by the view.)
integer between 0 and I0,000, inclusive Default: 10 0

dynamic Key: a or A

D.2.2.4. Specific View Parameters

Some features are specific only to one view. These are described below on a view-by-view
basis. OverVIEW features --

Name:

Function:

Type:

Update mode:

vk. overview, showMarks

This determines whether or not the view will indicate marks set by the insert_marker
directive.

boolean (0 or 1) Default: 1 (marks are indicated)

dynamic Key: r or R

Name:

Function:

Type:

Update mode:

vk. overview, showMessages

This determines whether or not the view will draw message lines.

boolean (0 or 1) Default: 1 (messages are drawn)
dynamic Key: m or M

Name:

Function:

Type:

Default:

vk. overview, messageColor

The messages will be drawn in this color.

string (This should appear in the file / u s r / 1 ib / X 11 / rgb. t xt, or the analogous file on
your system.)

blue Update mode: static

Name:

Function:

Type:

Update mode:

vk. overview, showDividers

This determines whether small black lines are drawn to separate procedures. The lines help
to show invocations of recursive procedures, which normally would not be shown, but the

dividing lines can cover up procedures that run for very short amounts of time.

boolean (0 or 1) Default: 0 (dividers are not drawn)

dynamic Key: d or D

Name:

Function:

Type:
Update mode:

vk. overview, barWidthFac tor

This determines the width of the procedure bars displayed on the view. A value of 1 causes
them to be as wide as possible, whereas a value of 0 causes them not to be drawn.
real number between 0 and 1, inclusive Default: 0.7

dynamic Key: b or B

Name:

Function:
vk. overview, highl ightColor

A highlighted message (one that is clicked on) is drawn in this color.

58

Type:

Default:

string (This should appear in the file/usr/lib/Xll/rgb, txt, or the analogous file on

your system.)
deep pink Update mode: . static

Name:

Function:

Type:

Default:

Update mode: dynamic

Boxes features-

(None. The node ordering cannot be specified by a named default.)
This determines the order in which the nodes are listed on the y-axis.

Each node is specified by a non-negative integer between 0 and the number of nodes - 1,

inclusive.

increasing order from the bottom of the chart to the top
Key: o or O

Name:

Function:

Type:
Default:

vk. boxe s.maxI nboxC ount

This is the maximum inbox count that can be displayed in the view's boxes. (Any higher

count is displayed at the maximum height.)

integer between 0 and 4096, inclusive
10 Update mode: static

Name: vk. boxes, spectrumSize

Function: This is the number of colors used to display the node utilization in the view's boxes.

Type: integer between 0 and 100, inclusive
Default: 16 Update mode: static

Communication Load features --

Name:

Function:

Type:
Update mode:

vk. commLoad, volumeOrCount

This determines whether total message volume or the total number of messages is displayed.

string (volume or count) Default: volume

dynamic Key: c or C

Name:

Function:

Type:

Default:

Update mode:

Inbox Sizes

vk. commLoad, volumeColor and vk. commLoad, countColor

This determines the color in which the volume/count are to be displayed.

string (This should appear in the file/usr/lib/X11/rgb.txt, or the analogous file on your

system.)
volumeColor is orchid, countColor is cornflower blue

static

features include numSizes and maxSize.

Name:
Function:

Type:
Update mode:

vk. inboxS i z e s. numS i ze s
This determines the number of size categories that will be displayed. (This is one less than
the number of colors that the view will use to depict the volume of pending messages.)

integer between 1 and 16, inclusive Default: S

dynamic Key: n or N

Name:

Function:

Type:

Update mode:

vk. inboxSizes .maxSize

This determines the maximum size of the size categories. (This is the number in the lowest

dialogue box on the right side of the view.)

integer between 1 and 99,999, inclusive Default: 512

dynamic Key: m or M

59

Appendix E. Converting AIMS Trace Files for ParaGraph

-4
-----w

lid

nm

II

1

B

IDmHIIIIIDHHIII
0 2 4 6 0 10 12 14.

Figure E-1. A Potpourri of ParaGraph Views from a Converted AIMS Trace File

Along with AIMS, we also provide a resource called atopg. This program allows the user to

convert an AIMS trace file into a format readable by ParaGraph. On running an AIMS trace

file through atopg, views such as the ones displayed above can be produced. The usage of

atopg is as follows:

atopg aims-trace > pgph-trace

The trace file produced by atopg can generate the following paragraph views: Utilization

Count, Gantt, Summary, Meter, and Profile; Communication Traffic (Volume), Spacetime,

Queues, Matrix, Meter (Volume), Animation, Hypercube, Network, Node Data, and Color Code;

Task Count, Gantt, Status, and Summary; Clock, Trace, Statistics, and Processor Status. The

Utilization Kiviat; Communication Traffic (Count) and Meter (Count); Critical Path, Phase, and

Coord Info. views do not work because of incompatibilities in the AIMS monitor and PICL

monitor.

6O

' Form Approved

REPORT DOCUMENTATION PAGE OMBNo.0704-0188
• ' ' 1 hour ^er res'_onse including the t me for reviewing instruCtions, searching existing data sourCes_,

Public re rlin burden for this collection of mformatton is esumaleu tu =v=_.=_ _" • .-_'-.'. _*'_ _=^_ comments ranardine this burden estimate or any other aspecl o_ tr=L_
gather ngP_andgmainta n ng the data needed, and completing and revlewmg the co.eczton o_ i.,vrm=,J

in this burden to Washington Headquarters Servces, Directorate for information Operations and Reporls, 1215 Jefferson
II ctlon of informalion, including sugges_ons_for reduc g , , _,....... ,i, a=,_. ' Pr ect i0704-0188'L Washin on, DC 20503.

_°a_S Highway. Suite 1204, Arlington, VA zzzu,_-4302, and to the Office of Management and Budge_, p ,...cllon ¢ , . gt

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

November 1993 Technical Memorandum
i

4. TITLE AND SUBTITLE

The Automated Instrumentation and Monitoring System (AIMS)

Reference Manual
i

6. AUTHOR(S)

Jerry Yan,* Philip Hontalas, Sherry Listgarten,* et al.

7. PERFORMINGORGANIZATIONNAME(S)ANDADDRESS(ES)

Ames Research Center

Moffett Field, CA 94035-1000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

S. FUNDING NUMBERS

509-10-33

8. PERFORMING ORGANIZATION

REPORT NUMBER

A-94012

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA TM- 108795

i11. SUPPLEMENTARY NOTES

Point of Contact: Jerry Yan, Ames Research Center, MS 269-3, Moffett Field, CA 94035-1000

(415) 604-4381

*Recom Technologies, San Jose, California
12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category - 61

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
programming paradigm, another "scalable multiprocessor" orWhether a researcher is designing the "next parallel " "" "

investigating resource allocation algorithms for multiprocessors, a facility that enables parallel program execution to be

captured and displayed is invaluable. Careful analysis of execution traces can help computer designers and software

architects to uncover system behavior and to take advantage of specific application characteristics and hardware features.

A software tool kit that facilitates performance evaluation of parallel applications on multiprocessors is described in this

paper. The Automated Instrumentation and Monitoring System (AIMS) has four major software components: a source code

instrumentor which automatically inserts active event recorders into the program's source code before compilation; a run-

time performance-monitoring library, which collects performance data; a trace file animation and analysis tool kit which

reconstructs program execution from the trace file; and a trace post-processor which compensate for data collection

overhead. Besides being used as prototype for developing new techniques for instrumenting, monitoring, and visualizing

parallel program execution, AIMS is also being incorporated into the run-time environments of various hardware testbeds

to evaluate their impact on user productivity. Currently, ALMS instrumentors accept FORTRAN and C parallel programs

written for Intel's NX operating system on the iPSC family of multicomputers. A run-time performance-monitoring library

for the iPSC/860 is included in this release. We plan to release momtors for other platforms (such as PVM and TMC's

CM-5) in the near future, performance data collected can be _aphically displayed on workstations (e.g. Sun Spare and SGI)

supporting X-Windows (in particular, X11R5, Motif 1.1.3).

14. SUBJECT TERMS

Performan evaluation, Parallel processing, Performance monitoring

r

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

NSN 7540-01-280-5500

' N18. SECURITY CLASSIFICATIO

OF THIS PAGE

Unclassified

• 15.' NUMBER OF PAGES

70
16. PRICE CODE

A04

19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRAC

OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-le

